Limiting Radiation in Trauma Imaging & Trauma Resuscitation

Current Topics in Emergency Trauma Care - Trauma EXTRA Supplement (Trauma CME)

Below is a free preview. Log in or subscribe for full access. Or, get a free sample article Emergency Department Management of Abnormal Uterine Bleeding in the Nonpregnant Patient:
Please provide a valid email address.

*NEW* Quick Search this issue!

Table of Contents
About This Issue

Appropriate clinical decision-making in the initial evaluation and management of trauma patients in the emergency department is critical to optimize patient outcomes. This supplement provides evidence-based recommendations for determining appropriate diagnostic imaging modalities in trauma patients, best practices and strategies in initial resuscitation of the trauma patient, and clinical decision tools to aid in decision-making.

What are the risks of radiation exposure from diagnostic imaging, and how should those risks be balanced with the benefits of imaging for trauma evaluation and management of injuries?

What is the effective dose of radiation for common imaging studies?

Which clinical decision tools are useful in making imaging decisions in trauma patients?

What are the special concerns for radiation exposure in vulnerable populations, such as children, the elderly, and patients with alcohol use disorders?

What are the key tenets of damage control resuscitation?

What are the goals of permissive hypotension and for which types of traumatic injuries is it indicated?

What is the current evidence regarding the ideal ratio of blood products in massive transfusion?

Within what timeframe following injury is the administration of TXA most beneficial?

What are the current guidelines for the use of REBOA in trauma patients?

Table of Contents
  1. Part 1: Limiting Radiation Exposure in Trauma Imaging
    1. Introduction
    2. Imaging Evaluation of the Trauma Patient
    3. Human Exposure to Radiation
    4. Measures of Radiation Dose and Exposure
      1. Estimation of Cancer Risk
    5. Diagnostic Decisions
    6. Radiation Exposure in Vulnerable Populations
      1. Pregnant Patients
      2. Pediatric Patients
      3. Elderly Patients
      4. Patients with Alcohol Use Disorders
      5. Interhospital Trauma Transfers
    7. Methods of Radiation Reduction
    8. Summary
    9. Tables and Figures
      1. Table 1. Deterministic Versus Stochastic Effects of Radiation
      2. Table 2. Measurements of Ionizing Radiation
      3. Table 3. Effective Doses of Radiation in Common Imaging Studies
      4. Table 4. Clinical Decision Rules for Trauma Imaging
      5. Table 5. Effects of Gestational Age and Radiation Dose on Fetal Development
      6. Figure 1. Left Lung Opacity Seen on Chest X-Ray
      7. Figure 2. Additional Findings Seen on Chest CT of Patient in Figure 1
      8. Figure 3. Elevation of the Left Hemidiaphragm Seen on Chest X-Ray
      9. Figure 4. Intact Diaphragm Seen on Chest CT of Patient in Figure 3
      10. Figure 5. X-Rays of the Cervical Spine With No Visible Fracture or Subluxation
      11. Figure 6. Additional Findings Seen on Cervical Spine CT of Patient in Figure 5
      12. Figure 7. Intact Right Diaphragm and Left Lung Opacities Seen on Chest X-Ray
      13. Figure 8. Additional Findings Seen on CT of the Abdomen and Pelvis of Patient in Figure 7
      14. Figure 9. Anterior-Posterior Chest X-Ray With Normal Findings
      15. Figure 10. Additional Findings Seen on CT of the Abdomen of the Patient in Figure 9
      16. Figure 11. Radiation Dose Report for a Computed Tomography of the Head
    10. References
  2. Part 2: Resuscitation in Trauma
    1. Introduction
    2. Damage Control Resuscitation
    3. Permissive Hypotension
    4. Massive Transfusion
      1. Scoring Systems for Massive Transfusion
    5. Whole Blood Transfusion
    6. Assessment of Coagulopathy
    7. Tranexamic Acid
    8. Resuscitative Endovascular Balloon Occlusion of the Aorta
    9. Summary
    10. Table
      1. Table 1. Assessment of Blood Consumption (ABC) Score Parameters
    11. References

Part 1: Limiting Radiation Exposure in Trauma Imaging


Increased diagnostic accuracy and widespread availability of computed tomography (CT) have enhanced initial trauma evaluation and facilitated nonoperative management of many types of injuries. However, concern that excessive radiation exposure could result in an increased lifetime cancer risk has prompted renewed evaluation of the potential risks and benefits of current diagnostic strategies. This supplement reviews best practices in diagnostic radiology for evaluation of the trauma patient and discusses approaches to optimize diagnostic assessment while limiting radiation exposure.

Tables and Figures

Table 1. Deterministic Versus Stochastic Effects of Radiation


Evidence-based medicine requires a critical appraisal of the literature based upon study methodology and number of subjects. Not all references are equally robust. The findings of a large, prospective, randomized, and blinded trial should carry more weight than a case report.

To help the reader judge the strength of each reference, pertinent information about the study, such as the type of study and the number of patients in the study is included in bold type following the references, where available. In addition, the most informative references cited in this paper, as determined by the author, are highlighted.

  1. Salim A, Sangthong B, Martin M, et al. Whole body imaging in blunt multisystem trauma patients without obvious signs of injury: results of a prospective studyArch Surg. 2006;141(5):468-473. (Prospective study; 1000 patients) 
  2. Schauer DA, Linton OW. NCRP report no. 160, ionizing radiation exposure of the population of the United States, medical exposure--are we doing less with more, and is there a role for health physicists? Health Phys. 2009;97(1):1-5. (Scientific committee report)
  3. United States Nuclear Regulatory Commission. Radiation Protection. Accessed August 1, 2020. (Government website)
  4. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277-2284. (Review)
  5. Radiation and your patient: a guide for medical practitioners. Ann ICRP. 2001;31(4):5-31. (Practice guideline)
  6. Radiation Dose in X-Ray and CT Exams. Accessed August 1, 2020. (American College of Radiology and Radiological Society of North America resource website)
  7. Asha S, Curtis KA, Grant N, et al. Comparison of radiation exposure of trauma patients from diagnostic radiology procedures before and after the introduction of a panscan protocol. Emerg Med Australas. 2012;24(1):43-51. (Retrospective chart review; 1280 patients)
  8. Ott M, McAlister J, VanderKolk WE, et al. Radiation exposure in trauma patients. J Trauma. 2006;61(3):607- 609. (Prospective cohort study; 224 patients)
  9. Wu D. Radiation exposure in trauma patients. Journal of Lancaster General Hospital. 2012;7(1):8-12. Accessed August 1, 2020. (Prospective cohort study; 2237 patients)
  10. Inaba K, Branco BC, Lim G, et al. The increasing burden of radiation exposure in the management of trauma patients. J Trauma. 2011;70(6):1366-1370. (Retrospective chart review; 992 patients)
  11. Mettler FA Jr, Huda W, Yoshizumi TT, et al. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254-263. (Review)
  12. Australian Radiation Protection and Nuclear Safety Agency. Exposure of humans to ionizing radiation for research purposesRadiation Protection Series No. 8. 2005. Accessed August 1, 2020. (Practice guideline)
  13. The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37(2-4):1-332. (Practice guideline)
  14. Tubiana M, Feinendegen LE, Yang C, et al. The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology. 2009;251(1):13-22. (Review)
  15. Health Physics Society. Radiation risk in perspective. Position statement of the Health Physics Society. PS010-2. 2010. Accessed August 1, 2020. (Practice guideline)
  16. Laack TA, Thompson KM, Kofler JM, et al. Comparison of trauma mortality and estimated cancer mortality from computed tomography during initial evaluation of intermediate-risk trauma patients. J Trauma. 2011;70(6):1362-1365. (Observational cohort study; 642 patients) 
  17. Gupta R, Greer SE, Martin ED. Inefficiencies in a rural trauma system: the burden of repeat imaging in interfacility transfers. J Trauma. 2010;69(2):253-255. (Prospective study; 104 patients)
  18. Ptak T, Rhea JT, Novelline RA. Radiation dose is reduced with a single-pass whole-body multi-detector row CT trauma protocol compared with a conventional segmented method: initial experience. Radiology. 2003;229(3):902-905. (Prospective study; 30 case patients, 30 control patients)
  19. Sierink JC, Treskes K, Edwards MJR, et al. Immediate total-body CT scanning versus conventional imaging and selective CT scanning in patients with severe trauma (REACT-2): a randomised controlled trial. Lancet. 2016;388(10045):673-683. (Multicenter randomized controlled trial; 1403 patients) 
  20. Caputo ND, Stahmer C, Lim G, et al. Whole-body computed tomographic scanning leads to better survival as opposed to selective scanning in trauma patients: a systematic review and meta-analysisJ Trauma Acute Care Surg. 2014;77(4):534-539. (Meta-analysis; 7 studies, 25,782 patients) 
  21. Jiang L, Ma Y, Jiang S, et al. Comparison of whole-body computed tomography vs selective radiological imaging on outcomes in major trauma patients: a meta-analysisScand J Trauma Resusc Emerg Med. 2014;22:54-54. (Meta-analysis; 11 studies, 26,371 patients) 
  22. Hoffman JR, Mower WR, Wolfson AB, et al. Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. National Emergency X-Radiography Utilization Study Group. N Engl J Med. 2000;343(2):94-99. (Prospective multicenter observational study; 34,069 patients)
  23. Stiell IG, Wells GA, Vandemheen KL, et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA. 2001;286(15):1841-1848. (Prospective multicenter cohort study; 8924 adult patients)
  24. Stiell IG, Wells GA, Vandemheen K, et al. The Canadian CT head rule for patients with minor head injury. Lancet. 2001;357(9266):1391-1396. (Prospective multicenter cohort study; 3121 patients)
  25. Rodriguez RM, Anglin D, Langdorf MI, et al. NEXUS chest: validation of a decision instrument for selective chest imaging in blunt trauma. JAMA Surg. 2013;148(10):940-946. (Prospective multicenter observational study; 9905 patients)
  26. Stiell IG, Greenberg GH, McKnight RD, et al. Decision rules for the use of radiography in acute ankle injuries. Refinement and prospective validation. JAMA. 1993;269(9):1127-1132. (Survey prospectively administered in 2 stages: first stage, 1032 of 1130 eligible patients; second stage, 453 of 530 eligible patients)
  27. Stiell IG, Greenberg GH, Wells GA, et al. Prospective validation of a decision rule for the use of radiography in acute knee injuries. JAMA. 1996;275(8):611-615. (Prospectively administered survey; 1096 of 1251 eligible patients)
  28. Duane TM, Mayglothling J, Wilson SP, et al. National Emergency X-Radiography Utilization Study criteria is inadequate to rule out fracture after significant blunt trauma compared with computed tomography. J Trauma. 2011;70(4):829-831. (Prospective evaluation; 2606 blunt trauma patients)
  29. Brent R. Pregnancy and radiation exposure. Health Physics Society. Accessed August 1, 2020. (Online article)
  30. McCollough CH, Schueler BA, Atwell TD, et al. Radiation exposure and pregnancy: when should we be concerned? Radiographics. 2007;27(4):909-917. (Policy statements from multiple professional organizations)
  31. Patel SJ, Reede DL, Katz DS, et al. Imaging the pregnant patient for nonobstetric conditions: algorithms and radiation dose considerationsRadiographics. 2007;27(6):1705-1722. (Presentation of imaging algorithms based on the peer-reviewed literature) 
  32. Wagner LK, Lester RG, Saldana LR. Exposure of the Pregnant Patient to Diagnostic Radiations: A Guide to Medical Management. 2nd ed. Madison, WI: Medical Physics Publishing, Inc.; 1997. (Textbook)
  33. De Santis M, Di Gianantonio E, Straface G, et al. Ionizing radiations in pregnancy and teratogenesis: a review of literature. Reprod Toxicol. 2005;20(3):323-329. (Literature review)
  34. Streffer C, Shore R, Konermann G, et al. Biological effects after prenatal irradiation (embryo and fetus). A report of the International Commission on Radiological Protection. Ann ICRP. 2003;33(1-2):5-206. (Practice guidelines)
  35. American College of Obstetrics and Gynecology Committee Opinion. Number 299, September 2004 (replaces no. 158, September 1995). Guidelines for diagnostic imaging during pregnancy. Obstet Gynecol. 2004;104(3):647-651. (Practice guidelines)
  36. Parry RA, Glaze SA, Archer BR. The AAPM/RSNA physics tutorial for residents. Typical patient radiation doses in diagnostic radiology. Radiographics. 1999;19(5):1289-1302. (Review)
  37. Wakeford R, Little MP. Risk coefficients for childhood cancer after intrauterine irradiation: a review. Int J Radiat Biol. 2003;79(5):293-309. (Retrospective review)
  38. American Academy of Pediatrics Section on Radiology. What every pediatrician should know.Accessed August 1, 2020. (Recommendations)
  39. Brenner DJ, Doll R, Goodhead DT, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci U S A. 2003;100(24):13761-13766. (Review)
  40. Brunetti MA, Mahesh M, Nabaweesi R, et al. Diagnostic radiation exposure in pediatric trauma patients. J Trauma. 2011;70(2):E24-E28. (Retrospective review; 945 children)
  41. Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort studyLancet. 2012;380(9840):499-505. (Retrospective cohort study; 178,604 patients) 
  42. Shah NB, Platt SL. ALARA: is there a cause for alarm? Reducing radiation risks from computed tomography scanning in children. Curr Opin Pediatr. 2008;20(3):243-247. (Review)
  43. Labib N, Nouh T, Winocour S, et al. Severely injured geriatric population: morbidity, mortality, and risk factors. J Trauma. 2011;71(6):1908-1914. (Retrospective review; 276 patients)
  44. Hamilton BH, Sheth A, McCormack RT, et al. Imaging of frequent emergency department users with alcohol use disorders. J Emerg Med. 2014;46(4):582-587. (Retrospective review; 51 patients)
  45. Granata RT, Castillo EM, Vilke GM. Safety of deferred CT imaging of intoxicated patients presenting with possible traumatic brain injury. Am J Emerg Med. 2017;35(1):51-54. (Retrospective review; 5947 patients)
  46. Easter JS, Haukoos JS, Claud J, et al. Traumatic intracranial injury in intoxicated patients with minor head trauma. Acad Emerg Med. 2013;20(8):753-760. (Prospective cohort study; 283 patients)
  47. Jones AC, Woldemikael D, Fisher T, et al. Repeated computed tomographic scans in transferred trauma patients: indications, costs, and radiation exposure. J Trauma Acute Care Surg. 2012;73(6):1564-1569. (Prospective observational cohort study; 211 patients)
  48. Emick DM, Carey TS, Charles AG, et al. Repeat imaging in trauma transfers: a retrospective analysis of computed tomography scans repeated upon arrival to a Level I trauma center. J Trauma Acute Care Surg. 2012;72(5):1255-1262. (Retrospective review)
  49. Kalra MK, Maher MM, Toth TL, et al. Techniques and applications of automatic tube current modulation for CT. Radiology. 2004;233(3):649-657. (Review)
  50. Raman SP, Johnson PT, Deshmukh S, et al. CT dose reduction applications: available tools on the latest generation of CT scanners. J Am Coll Radiol. 2013;10(1):37-41. (Review)

Part 2: Resuscitation in Trauma


Resuscitation involves the restoration of adequate tissue perfusion to meet the consumptive demands of the body. The ultimate goals of resuscitation are the prevention of an uncompensated anaerobic state and the reversal of metabolic hypoxia. To achieve these goals, timely intervention with an organized and targeted resuscitative strategy optimizes patient care.1-3 Achievement of these goals is dependent on a multidisciplinary approach to the management of the injured patient, and it requires careful coordination as the patient transitions from the resuscitation bay to the operating room and the intensive care unit (ICU). Strategies for the management of trauma patients during initial resuscitation are continuously evolving. This supplement reviews the current evidence in these critical and evolving areas of resuscitation to help guide the emergency clinician on current best practice.


Table 1. Assessment of Blood Consumption (ABC) Score Parameters


Evidence-based medicine requires a critical appraisal of the literature based upon study methodology and number of subjects. Not all references are equally robust. The findings of a large, prospective, randomized, and blinded trial should carry more weight than a case report.

To help the reader judge the strength of each reference, pertinent information about the study, such as the type of study and the number of patients in the study is included in bold type following the references, where available. In addition, the most informative references cited in this paper, as determined by the author, are highlighted.

  1. Curry N, Davis PW. What’s new in resuscitation strategies for the patient with multiple trauma? Injury. 2012;43(7):1021-1028. (Review)
  2. Kaafarani HM, Velmahos GC. Damage control resuscitation in trauma. Scand J Surg. 2014;103(2):81-88. (Review)
  3. Theusinger OM, Madjdpour C, Spahn DR. Resuscitation and transfusion management in trauma patients: emerging concepts. Curr Opin Crit Care. 2012;18(6):661-670. (Review)
  4. American College of Surgeons Committee on Trauma. Advanced Trauma Life Support (ATLS) Student Course Manual. 8th ed. Chicago, IL: American College of Surgeons; 2008. (Manual)
  5. Cherkas D. Traumatic hemorrhagic shock: advances in fluid management. Emerg Med Pract. 2011;13(11):1- 19. (Review)
  6. Cotton BA, Guy JS, Morris JA Jr, et al. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies. Shock. 2006;26(2):115-121. (Review)
  7. Rotondo MF, Schwab CW, McGonigal MD, et al. ‘Damage control’: an approach for improved survival in exsanguinating penetrating abdominal injury. J Trauma. 1993;35(3):375-383. (Single-center retrospective review; 46 patients)
  8. Harris T, Thomas GO, Brohi K. Early fluid resuscitation in severe trauma. BMJ. 2012;345:e5752. (Review)
  9. Cannon JW, Khan MA, Raja AS, et al. Damage control resuscitation in patients with severe traumatic hemorrhage: a practice management guideline from the Eastern Association for the Surgery of TraumaJ Trauma Acute Care Surg. 2017;82(3):605-617. (Systematic review; 31 studies) 
  10. Cotton BA, Reddy N, Hatch QM, et al. Damage control resuscitation is associated with a reduction in resuscitation volumes and improvement in survival in 390 damage control laparotomy patients. Ann Surg. 2011;254(4):598-605. (Single-center retrospective cohort review: 390 patients)
  11. Campbell K, Naumann DN, Remick K, et al. Damage control resuscitation and surgery for indigenous combat casualties: A prospective observational study. J R Army Med Corps. 2019;jramc-2019-001228. (Prospective observational study; 680 patients)
  12. Dutton RP, Mackenzie CF, Scalea TM. Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J Trauma. 2002;52(6):1141-1146. (Prospective randomized single-center trial; 110 patients)
  13. Mapstone J, Roberts I, Evans P. Fluid resuscitation strategies: a systematic review of animal trials. J Trauma. 2003;55(3):571-589. (Systematic review; 44 trials, heterogenous animal population)
  14. Niven DJ, Stelfox HT, Ball CG, et al. Prehospital intravenous fluid administration is associated with higher mortality in trauma patients: a National Trauma Data Bank analysis. Ann Surg. 2014;259(2):e16. (Opinion)
  15. Ley EJ, Clond MA, Srour MK, et al. Emergency department crystalloid resuscitation of 1.5 L or more is associated with increased mortality in elderly and nonelderly trauma patients. J Trauma. 2011;70(2):398-400. (Single-center retrospective review of prospectively collected data; 3137 patients)
  16. Hampton DA, Fabricant LJ, Differding J, et al. Prehospital intravenous fluid is associated with increased survival in trauma patients. J Trauma Acute Care Surg. 2013;75:S9-S15. (Multicenter prospective cohort study; 1245 patients)
  17. Bickell WH, Wall MJ, Pepe PE, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. Resuscitation. 1995;29(2):183-184. (Prospective randomized controlled trial; 598 patients)
  18. Tran A, Yates J, Lau A, et al. Permissive hypotension versus conventional resuscitation strategies in adult trauma patients with hemorrhagic shockJ Trauma Acute Care Surg. 2018;84(5):802-808. (Systematic review; 5 trials) 
  19. Owattanapanich N, Chittawatanarat K, Benyakorn T, et al. Risks and benefits of hypotensive resuscitation in patients with traumatic hemorrhagic shock: a meta-analysis. Scand J Trauma Resusc Emerg Med. 2018;26(1):107. (Meta-analysis; 30 studies)
  20. Spahn DR, Bouillon B, Cerny V, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth editionCrit Care. 2019;23(1):98. (Guideline) 
  21. American College of Surgeons Committee on Trauma. Advanced Trauma Life Support (ATLS) Student Course Manual. 10th ed. Chicago, IL: American College of Surgeons; 2018. (Manual)
  22. McCafferty R, Neal C, Marshall S, et al. Joint Trauma System clinical practice guideline: neurosurgery and severe head injury. Accessed August 1, 2020. (Guideline)
  23. Borgman MA, Spinella PC, Perkins JG, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805-813. (Retrospective review; 246 patients)
  24. Duchesne JC, Holcomb JB. Damage control resuscitation: addressing trauma-induced coagulopathy. Br J Hosp Med (Lond). 2009;70(1):22-25. (Review)
  25. Gunter OL, Au BK, Isbell JM, et al. Optimizing outcomes in damage control resuscitation: identifying blood product ratios associated with improved survival. J Trauma. 2008;65(3):527-534. (Single-center retrospective review with historical cohort comparison; 259 patients)
  26. Holcomb JB. Optimal use of blood products in severely injured trauma patients. Hematology. 2010; 2010(1):465-469. (Review)
  27. Holcomb JB, Jenkins D, Rhee P, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62(2):307-310. (Review)
  28. Riskin DJ, Tsai TC, Riskin L, et al. Massive transfusion protocols: the role of aggressive resuscitation versus product ratio in mortality reduction. J Am Coll Surg. 2009;209(2):198-205. (Single-center retrospective review with historical cohort comparison; 46 patients)
  29. Zink KA, Sambasivan CN, Holcomb JB, et al. A high ratio of plasma and platelets to packed red blood cells in the first 6 hours of massive transfusion improves outcomes in a large multicenter study. Am J Surg. 2009;197(5):565-570. (Retrospective review; 466 patients)
  30. Johansson P, Ostrowski S, Oliveri R. Hemostatic resuscitation with plasma and platelets in trauma. J Emerg Trauma Shock. 2012;5(2):120-125. (Meta-analysis; 16 studies)
  31. Holcomb JB, del Junco DJ, Fox EE, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) studyJAMA Surgery. 2013;148(2):127-136. (Multicenter prospective cohort study; 1245 patients) 
  32. Dente CJ, Shaz BH, Nicholas JM, et al. Improvements in early mortality and coagulopathy are sustained better in patients with blunt trauma after institution of a massive transfusion protocol in a civilian level I trauma center. J Trauma. 2009;66(6):1616-1624. (Single-center prospective cohort with historical controls; 73 patients)
  33. Cotton BA, Dossett LA, Au BK, et al. Room for (performance) improvement: provider-related factors associated with poor outcomes in massive transfusion. J Trauma. 2009;67(5):1004-1012. (Retrospective review; 125 trauma activations)
  34. Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trialJAMA. 2015;313(5):471-482. (Multisite randomized clinical trial; 680 patients)
  35. Vraets A, Lin Y, Callum JL. Transfusion-associated hyperkalemia. Transfus Med Rev. 2011;25(3):184-196. (Review)
  36. Inaba K, Branco BC, Rhee P, et al. Impact of plasma transfusion in trauma patients who do not require massive transfusion. J Am Coll Surg. 2010;210(6):957-965. (Single-center retrospective review; 1716 patients)
  37. Cotton BA, Dossett LA, Haut ER, et al. Multicenter validation of a simplified score to predict massive transfusion in trauma. J Trauma. 2010;69(Suppl 1):S33-S39. (Multicenter prospective validation study; 1604 patients)
  38. Nunez TC, Dutton WD, May AK, et al. Emergency department blood transfusion predicts early massive transfusion and early blood component requirement. Transfusion. 2010;50(9):1914-1920. (Retrospective single-center review; 1441 patients)
  39. Nunez TC, Voskresensky IV, Dossett LA, et al. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma. 2009;66(2):346-352. (Retrospective cohort review; 596 patients)
  40. Ogura T, Nakamura Y, Nakano M, et al. Predicting the need for massive transfusion in trauma patients. J Trauma Acute Care Surg. 2014;76(5):1243-1250. (Single-center retrospective validation study; 119 patients)
  41. Holcomb JB, Spinella PC. Optimal use of blood in trauma patients. Biologicals. 2010;38(1):72-77. (Review)
  42. Repine TB, Perkins JG, Kauvar DS, et al. The use of fresh whole blood in massive transfusion. J Trauma. 2006;60(6 Suppl):S59-S69. (Review)
  43. Spinella PC, Perkins JG, Grathwohl KW, et al. Risks associated with fresh whole blood and red blood cell transfusions in a combat support hospital. Crit Care Med. 2007;35(11):2576-2581. (Retrospective review; 2831 blood samples)
  44. Spinella PC. Warm fresh whole blood transfusion for severe hemorrhage: U.S. military and potential civilian applications. Crit Care Med. 2008;36(Suppl):S340-S345. (Review)
  45. Ho KM, Leonard AD. Lack of effect of unrefrigerated young whole blood transfusion on patient outcomes after massive transfusion in a civilian setting. Transfusion. 2011;51(8):1669-1675. (Single-center retrospective review; 353 patients)
  46. McCully SP, Fabricant LJ, Kunio NR, et al. The international normalized ratio overestimates coagulopathy in stable trauma and surgical patients. J Trauma Acute Care Surg. 2013;75(6):947-953. (Prospective study; 106 patients)
  47. Wikkelsø A, Wetterslev J, Møller AM, et al. Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database Syst Rev. 2016;2016(8):CD007871. (Systematic review; 17 studies)
  48. Sharp G, Young CJ. Point-of-care viscoelastic assay devices (rotational thromboelastometry and thromboelastography): a primer for surgeons. ANZ J Surg. 2018;89(4):291-295. (Literature review; 35 studies)
  49. Blackwell T. Prehospital care of the adult trauma patient. UpToDate. Accessed August 1, 2020. (Review)
  50. Roberts I, Shakur H, Coats T, et al. The CRASH-2 trial: a randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patientsHealth Technol Assess. 2013;17(10):1-79. (Single combat center retrospective observational study; 20,211 patients) 
  51. Morrison JJ. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) studyArch Surg. 2012;147(2):113-119. (Single combat center retrospective observational study; 866 patients) 
  52. Hughes CW. Use of an intra-aortic balloon catheter tamponade for controlling intra-abdominal hemorrhage in man. Surgery. 1954;36(1):65-68. (Case report)
  53. Osborn LA, Brenner ML, Prater SJ, et al. Resuscitative endovascular balloon occlusion of the aorta: current evidence. Open Access Emerg Med. 2019;11:29-38. (Review)
  54. Brenner ML, Moore LJ, DuBose JJ, et al. A clinical series of resuscitative endovascular balloon occlusion of the aorta for hemorrhage control and resuscitation. J Trauma Acute Care Surg. 2013;75(3):506-511. (Clinical series)
  55. DuBose JJ, Scalea TM, Brenner M, et al. The AAST prospective aortic occlusion for resuscitation in trauma and acute care surgery (aorta) registry. J Trauma Acute Care Surg. 2016;81(3):409-419. (Prospective multicenter study; 114 patients)
  56. Brenner M, Teeter W, Hoehn M, et al. Use of resuscitative endovascular balloon occlusion of the aorta for proximal aortic control in patients with severe hemorrhage and arrest. JAMA Surgery. 2018;153(2):130-135. (Single-site study; 90 patients)
  57. Joseph B, Zeeshan M, Sakran JV, et al. Nationwide analysis of resuscitative endovascular balloon occlusion of the aorta in civilian trauma. JAMA Surgery. 2019;154(6):500-508. (Case-controlled retrospective analysis; 420 patients) 
  58. Brenner M, Bulger EM, Perina DG, et al. Joint statement from the American College of Surgeons Committee on Trauma (ACS COT) and the American College of Emergency Physicians (ACEP) regarding the clinical use of resuscitative endovascular balloon occlusion of the aorta (REBOA)Trauma Surg Acute Care Open. 2018;3(1):e000154. (Policy statement) 
  59. Eliason JL, Myers DD, Ghosh A, et al. Resuscitative endovascular balloon occlusion of the aorta (REBOA): zone I balloon occlusion time affects spinal cord injury in the nonhuman primate model. Ann Surg. June 7, 2019. (Animal study; 21 baboons)
Publication Information

Bonny J. Baron, MD; Jinel Scott, MD, MBA; Geraldine N. Abbey-Mensah, MD; Benjamin Barmaan, MD, MS; Julie Winkle, MD, FACEP, FCCM

Peer Reviewed By

Kaushal Shah, MD, FACEP

Publication Date

August 15, 2020

CME Expiration Date

August 15, 2023    CME Information

CME Credits

4 AMA PRA Category 1 Credits.
Specialty CME Credits: Included as part of the 4 credits, this CME activity is eligible for 4 Stroke CME credits, subject to your state and institutional approval.

Get Permission

Content you might be interested in
Already purchased this course?
Log in to read.
Purchase a subscription

Price: $449/year

140+ Credits!

Purchase Issue & CME Test

Price: $99

+4 Credits!

Money-back Guarantee
Get A Sample Issue Of Emergency Medicine Practice
Enter your email to get your copy today! Plus receive updates on EB Medicine every month.
Please provide a valid email address.