Pediatric Emergency Trauma Care: Current Topics And Controversies

Volume I

Based on current evidence, develop strategies to manage pediatric patients presenting with blunt chest trauma, submersion injuries, traumatic cervical spine injuries, sports trauma, and nonaccidental trauma

Brought to you exclusively by the publisher of:
Emergency Medicine Practice
Pediatric Emergency Medicine Practice
ED CLEAR™
EMplify
Emergency Trauma Care
Emergency Stroke Care
The Lifelong Learning and Self-Assessment Study Guide
Pediatric Emergency Trauma Care: Current Topics And Controversies, Volume I

Product Preview Information

The information contained herein is a representative sample of the complete product, and it is intended to provide a sense of the quality and comprehensive nature of the product.

This book includes two issues of PEM Practice and one issue of EM Practice Guidelines Update that have been reviewed and updated with current research and more recent guidelines. Also included are two chapters of new content that review updated guidelines as well as evidence-based practical information for patient management. This book was designed to mirror volumes I and II of the adult counterpart products.

Included In This Book:
1. 100 pages of evidence-based content, covering 5 critical topics
2. 18 AMA PRA Category 1 Credits™ that are trauma specific
3. Summarized information to help you keep up with current guidelines and best practices
4. Treatment recommendations to help you determine the critical actions required when caring for these patients
5. And much more!

The 5 topics covered in this volume address some of the most pressing concerns for emergency clinicians:
1. Acute Cervical Spine And Spinal Cord Injury (Update covers the 2016 NICE guidelines)
2. Blunt Chest Trauma (Update includes more recent research)
3. Drowning And Submersion Issues (Update covers the 2016 Wilderness Medical Society Guidelines)
4. Orthopedic Sports Injuries (new content)
5. Nonaccidental Trauma (new content)

This product is available in print and online. Each order includes access to the pdf version of the book.
Pediatric Emergency Trauma Care: Current Topics And Controversies, Volume I

Release Date: February 28, 2017
Date of Most Recent Review: February 20, 2017
Termination Date: February 28, 2020
Time To Complete Activity: 18 hours

This activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education.

Accreditation Statement: EB Medicine is accredited by the ACCME to provide continuing medical education for physicians.

Credit Designation Statement: EB Medicine designates this enduring material for a maximum of 18 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Needs Assessment: The need for this educational activity was determined by a survey of medical staff; review of morbidity and mortality data from the CDC, AHA, and NCHS; evaluation of prior activities for emergency medicine clinicians, physician surveys, meetings with board-certified physicians, and attendance at annual conferences.

Goals: The goal of this activity is to increase clinician competency in the management of various types of trauma in pediatric patients.

Learning Objectives: At the conclusion of this CME activity, you should be able to:
1. Discuss the effects of blunt trauma to the pediatric chest and identify the diagnostic and treatment options for commonly encountered injuries such as pulmonary contusions, rib fractures, and pneumothoraces; as well as less common injuries such as blunt cardiac injuries, commotio cordis, nonaccidental trauma, and aortic injuries.
2. Initiate emergency management of the drowning victim, manage the hypothermic drowning patient, recognize the predictors of outcomes and limitations when resuscitating the drowning pediatric patient, and discuss the 2016 Wilderness Medical Society drowning recommendations.
3. Differentiate the recommendations for imaging of the cervical spine in children aged < 3 years and those for children aged > 3 years; describe the ideal immobilization position for children aged < 8 years with potential spinal cord trauma; assess the work-up of spinal cord injury without radiographic abnormality; and discuss the updated NICE guideline recommendations.
4. Distinguish the presentations of accidental trauma versus nonaccidental trauma, noting red flags and risk factors for abuse in the history and physical examination; manage these conditions appropriately; and report the trauma to the appropriate sources.
5. Describe the differences in injury patterns between pediatric and adult athletes, and manage a wide range of pediatric sports medicine conditions ranging from benign to emergent.

Target Audience: This enduring material is designed for emergency medicine physicians, physician assistants, nurse practitioners, and residents.

Course Director:
Andy Jagoda, MD, FACEP, Professor and Chair, Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, Medical Director, Mount Sinai Hospital, New York, NY

Disclosure Information: It is the policy of EB Medicine to ensure objectivity, balance, independence, transparency, and scientific rigor in all CME-sponsored educational activities. All faculty participating in the planning or implementation of a sponsored activity are expected to disclose to the audience any relevant financial relationships and to assist in resolving any conflict of interest that may arise from the relationship. In compliance with all ACCME Essentials, Standards, and Guidelines, all faculty for this CME activity were asked to complete a full disclosure statement. The information received is as follows: Dr. Agoritsas, Dr. Bradin, Dr. Campwala, Dr. Foster, Dr. Hahn, Dr. McCarty, Dr. Maldonado, Dr. Pauze, Dr. Pauze, Dr. Quan, Dr. Semple-Hess, Dr. Vazquez, Dr. Waltzman, and Dr. Waseem report no significant financial interest or other relationship with the manufacturer(s) of any commercial product(s) discussed in this educational presentation. Dr. Jagoda reports the following: consultant, Daishi; consultant, Pfizer; consulting fees, EB Medicine.

Commercial Support: This activity received no commercial support.

Method of Participation: Read the printed material and complete the CME Answer And Evaluation Form on page 103 or online at www.ebmedicine.net/PediatricTraumaBookVol1. You may also scan the QR code with an enabled device to take the CME test. Note that the entire test does not have to be completed at one time; you may stop at any point and the questions answered correctly will be saved; however, the CME credit certificate will not be issued until all questions have been answered.

Hardware/Software Requirements: You will need a PC or Macintosh to access the PDF online and to complete the online CME test.

Discussion of Investigational Information: As part of this material, faculty may be presenting investigational information about pharmaceutical products that is outside of Food and Drug Administration approved labeling. Information presented as part of this activity is intended solely as continuing medical education and is not intended to promote off-label use of any pharmaceutical product.

Copyright © 2017 EB Medicine. All rights reserved.

EB Medicine is not affiliated with any pharmaceutical company or medical device manufacturer and does not accept any commercial support.
Contributors

Editor and Book Peer Reviewer
David Foster, MD
Assistant Professor, Hofstra Northwell School of Medicine, North Shore University Hospital, Manhasset, NY

Associate Editors
Eric Legome, MD
Chair of Emergency Medicine, Mount Sinai West and Mount Sinai St. Luke's, Vice Chair of Academic Affairs for Emergency Medicine, Mount Sinai Health System, Icahn School of Medicine at Mount Sinai, New York, NY

Lee W. Shockley, MD, MBA
Emergency Physician, CarePoint PC and Rose Medical Center, Denver, CO

Authors
Konstantinos Agoritsas, MD, FAAP
Director, Pediatric Emergency Medicine, NYC Health + Hospitals Kings County; Clinical Assistant Professor, State University of New York, Downstate Medical Center, New York, NY

Rashida Campwala, MD
Fellow, Division of Emergency Medicine, Children's Hospital of Los Angeles, Los Angeles, CA

David M. Foster, MD
Assistant Professor, Hofstra Northwell School of Medicine, North Shore University Hospital, Hempstead, NY

Nestor Maldonado, MD
Sports Medicine Fellow, Emergency Department, Northwell: North Shore University Hospital, Manhasset, NY

Bryan McCarty, MD
Attending Physician, Department of Emergency Medicine, Primary Care Sports Medicine, North Shore University Hospital, Manhasset, NY

Denis R. Pauzé, MD, FAAP, FACEP, FAAEM
Vice Chair, Operations, Associate Professor of Emergency Medicine and Pediatrics, Department of Emergency Medicine, Albany Medical College, Albany, NY

Daniel R. Pauzé, MD, FACEP
Medical Director, Department of Emergency Medicine, Assistant Professor of Emergency Medicine, Albany Medical College, Albany, NY

Janet Semple-Hess, MD
Attending Physician, Division of Emergency Medicine, Children’s Hospital of Los Angeles; Associate Professor of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA

Michelle Vazquez, MD
Pediatric Emergency Medicine Fellow, Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, NY

Pediatric Emergency Medicine Practice Peer Reviewers
Stuart A. Bradin, DO, FAAP, FACEP
Assistant Professor of Pediatrics and Emergency Medicine, Department of Emergency Medicine, Division of Pediatric Emergency Medicine, The University of Michigan Health System; Attending Physician, Children’s Emergency Services, Ann Arbor, MI

Linda Quan, MD
Professor, Pediatric Emergency Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA

Mark Waltzman, MD, FAAP
Chief of Pediatrics, South Shore Hospital, Assistant Professor in Pediatrics, Harvard Medical School, Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA

Muhammad Waseem, MD, MS
Research Director, Emergency Medicine, Lincoln Medical & Mental Health Center, Bronx, NY
Contents

CME Accreditation Info .. 1

Contributors ... 2

Chapter 1. Pediatric Blunt Chest Trauma
Update On Evaluation Recommendations For Blunt Chest Trauma In Pediatric Patients 5
David M. Foster
Emergency Management Of Blunt Chest Trauma In Children:
An Evidence-Based Approach, Pediatric Emergency Medicine Practice, November 2013 7
Denis R. Pauzé, Daniel K. Pauzé

Chapter 2. Pediatric Submersion Injuries
Update On The 2016 Recommendations For Management Of Drowning
Patients By The Wilderness Medical Society ... 33
David M. Foster
Pediatric Submersion Injuries: Emergency Care And Resuscitation,
Pediatric Emergency Medicine Practice, June 2014 .. 35
Janet Semple-Hess, Rashida Campwala

Chapter 3. Pediatric Cervical Spine Injuries
Update On Management Of Pediatric Cervical Spine Injuries And the 2016 NICE Guidelines 59
David M. Foster
2013 Guidelines For Management Of Acute Cervical Spine And Spinal Cord
Injury In Pediatric Patients, EM Practice Guidelines Update, September 2014 63
Michelle Vazquez

Chapter 4. Pediatric Nonaccidental Trauma ... 69
Konstantinos Agoritsas, David M. Foster

Chapter 5. Pediatric Orthopedic Trauma In Sports Injuries ... 83
Nestor Maldonado, Bryan McCarty

CME Answer And Evaluation Form .. 101
The following pages contain a preview page from each chapter in addition to a detailed outline of the content covered.
Chapter 1. Pediatric Blunt Chest Trauma

There have been no major new recommendations to the assessment and management of pediatric blunt thoracic trauma since the 2013 Pediatric Emergency Medicine Practice evidence-based review titled “Emergency Management of Blunt Chest Trauma in Children: An Evidence-based Approach.” Additionally, there are no established guidelines with a protocol for the use of computed tomography (CT) in the evaluation of blunt thoracic trauma. The recurrent theme of the majority of publications includes limiting ionizing radiation and differentiating radiographic-apparent abnormalities from clinically significant injuries that would require intervention.

A 2013 retrospective multicenter cohort study of 425 pediatric patients with blunt thoracic trauma determined odds ratios (ORs) for positive findings on chest x-ray (CXR) associated with significant thoracic injuries on chest CT.1 Nine of the cases had a “normal” CXR, but had significant thoracic injury determined by chest CT. Only 1 injury required intervention, a hemopericardium detected by focused assessment with sonography for trauma (FAST). The other 8 out of 9 “missed” injuries included hydrothoraces and/or pneumothoraces that did not require chest tube insertion. The presence of a hydrothorax and/or pneumothorax and isolated subcutaneous emphysema detected on CXR were associated with an adjusted OR of 10.8 and 19.8, respectively, for significant injuries found on chest CT.

A 2016 retrospective chart review of 166 pediatric patients with blunt thoracic trauma found 33 patients with 45 injuries detected on diagnostic imaging.2 While statistically significant predictors of abnormal imaging included hypoxia (OR, 5.57) and abnormal pelvic findings (OR, 5.52), the majority of patients did not require any procedural intervention. The authors concluded that abnormal findings needing clinical intervention can be found on initial CXR and that any additional abnormal findings detected on CT are not necessarily clinically relevant.

A 2014 prospective observational study evaluated pediatric trauma patients with mechanisms of injury suspicious for chest injury, but who were asymptomatic for chest and abdomen injury on examination. Of the 42 patients enrolled, 11 injuries were found by CT imaging3. All injuries to the chest and abdomen were stable and required no procedural interventions. The authors concluded that there is no benefit in advanced imaging in patients with low clinical suspicion for injury.

The overall theme continues that advanced imaging offers little clinical impact when there is a low clinical suspicion for significant injury. The risk of ionizing radiation and consequences of downstream testing can be detrimental and should be weighed when making clinical decisions.

References
Chapter 1. Pediatric Blunt Chest Trauma

Table of Contents

Detailed Chapter Sections
1. Update on Evaluation Recommendations for Blunt Chest Trauma in Pediatric Patients
 a. References (3)
2. Abstract
3. Case Presentations
4. Introduction
5. Critical Appraisal of the Literature
6. Etiology and Epidemiology
 a. Etiology
 i. Types of Chest Injuries from Blunt Trauma
 ii. Mortality
 b. Anatomy and Physiology
7. Prehospital Care
8. Emergency Department Evaluation
 a. History
 b. Physical Examination
 c. Emergent Stabilization
 d. A Clinical Decision Rule for Identifying Chest Trauma
9. Differential Diagnosis
10. Diagnostic Studies
 a. Laboratory Studies
 b. Electrocardiogram
 c. Imaging Studies
 i. Chest X-ray
 ii. Ultrasound
 iii. Chest Computed Tomography
 iv. Echocardiography
11. Specific Thoracic Injuries
 a. Tracheobronchial Injury
 b. Pulmonary Contusions and Lacerations
 c. Pneumothorax and Hemothorax
 d. Aortic Injury
 e. Radiographic Findings in Aortic Injuries
 f. Nonaccidental Injury
 g. First-Rib Fracture
 h. Blunt Cardiac Injury
 i. Diagnosing Blunt Cardiac Injury
 ii. Commotio Cordis
12. Treatment
13. Controversies and Cutting Edge
 a. Chest Computed Tomography Scans and Radiation Exposure
 b. Low-Radiation Computed Tomography Scans
 c. Negative-Pressure Ventilation and Negative Extrathoracic Pressure
14. Risk Management Pitfalls for Chest Trauma in Children
15. Disposition
16. Summary
17. Case Conclusions
18. References (110)
19. CME Questions (10)

Tables & Figures
1. Prevalence of Thoracic Injuries
2. Physical Examination Findings to Predict Chest Injuries in the Pediatric Patient
3. Study Results for Computed Tomography and Chest X-Ray to Identify Significant Blunt Chest Trauma
4. Multiple Rib Fractures in an Infant With Nonaccidental Trauma
5. Clinical Pathway for Management of the Pediatric Patient With Suspected Blunt Chest Trauma
6. Clinical Pathway for Management of the Pediatric Patient With Blunt Chest Trauma and Abnormal Chest X-Ray
7. Cardiac Tamponade in a 4-Year-Old Girl
8. Electrocardiographic Representation of the Commotio Cordis Window
Chapter 2. Pediatric Submersion Injuries

The Wilderness Medical Society published an updated guideline in June 2016 titled “Wilderness Medical Society Practice Guidelines for the Prevention and Treatment of Drowning.” Relevant articles were identified and assessed by expert physicians and then used to create recommendations for management of drowning. The recommendations were graded based on the quality and type of evidence (eg, 1A, strong recommendation with high-quality evidence using randomized controlled trials without important limitations, or overwhelming evidence from observational studies; 1C, strong recommendation with low-quality or very low-quality evidence using observational studies or case series; 2C, weak recommendation with low-quality or very low-quality evidence using observational studies or case series).

The guidelines succinctly summarize the evidence for management of drowning, with a portion of the guidelines focused on rescuing the victim and out-of-hospital care. The authors call for use of consistent terminology regarding drowning to facilitate obtaining accurate data and research. Additionally, the authors of the guidelines emphasize that determining the type of drowning (freshwater vs saltwater, wet vs dry, etc) does not have any impact on management, as the physiologic insult is always hypoxemia and potential cardiopulmonary arrest. Recommendations for management, as stated in the Wilderness Medical Society practice guidelines that are applicable to the emergency clinician, are detailed below.

Initial Resuscitation

Hypothermia
- Recommendation: Treat hypothermia aggressively with active and passive measures dependent on patient conditions and available resources. (Recommendation grade: 1C)

Cardiopulmonary Resuscitation And Prioritization Of Airway
- Recommendation: Establishing an airway and providing oxygen are priorities in the initial resuscitation of a drowning patient. For the patient in cardiac arrest, provide positive-pressure ventilation in addition to chest compressions using the traditional Airway-Breathing-Circulation model of resuscitation. (Recommendation grade: 1C)

Oxygenation
- Recommendation: For resuscitation of a drowning patient, oxygen should be delivered at the highest concentration available, based on the patient’s tolerance and available resources or provider training. For the patient in respiratory distress or arrest, providing positive-pressure ventilation is preferred over passive ventilation. (Recommendation grade: 1C)

Cervical Spinal Immobilization
- Recommendation: Spinal immobilization should be considered in patients with evidence of spinal injury, such as focal neurological deficit or history of high-risk activity, and in patients who exhibit altered mental status. Spinal immobilization should not take priority over initial resuscitation of a patient with severe respiratory distress who requires aggressive airway management. (Recommendation grade: 1C)
Chapter 2. Pediatric Submersion Injuries

Table of Contents

Detailed Chapter Sections
1. Update on the 2016 Recommendations for Management of Drowning Patients by the Wilderness Medical Society
 a. Initial Resuscitation
 ii. Hypothermia
 iii. Cardiopulmonary Resuscitation and Prioritization of Airway
 iv. Oxygenation
 v. Cervical Spine Immobilization
 b. Postresuscitation Management
 i. Antibiotics
 ii. Corticosteroids
 c. Disposition in the Emergency Department
 d. Reference (1)
2. Abstract
3. Case Presentations
4. Introduction
5. Critical Appraisal of the Literature
6. Demographics of Pediatric Drowning
7. Risk Factors for Pediatric Drowning
8. Pathophysiology
 a. The Drowning Process
 b. Pulmonary Factors
 c. Cardiovascular Factors
 d. Neurologic Factors
 e. Other Factors
 f. “Dry Drowning” – Does It Truly Exist?
 g. The Autonomic Conflict
9. Differential Diagnosis
10. Prehospital Care
11. Emergency Department Evaluation
12. Diagnostic Testing
13. Treatment
 a. Management of Hypothermia
 i. External Rewarming
 ii. Internal Rewarming
 iii. Other Physiological Considerations for Hypothermic Patients
 b. Referral to the Pediatric Intensive Care Unit
14. Disposition
15. Predictors of Outcomes in the Pediatric Drowning Patient
 a. Resuscitation in the Field and Cardiopulmonary Resuscitation Duration
 b. Glasgow Coma Scale Score and Pediatric Risk of Mortality Score
 c. State of Hypothermia
 d. Water Temperature
 e. Age of Drowning Victim
 f. Other Predictors
 g. Summary
16. Special Circumstances
 a. Pediatric Drowning in Buckets, Bathtubs, and Spas
 i. Bucket Drowning
 ii. Bathtub Drowning
 iii. Hot Tub and Spa Drowning
 b. Drowning and Nonaccidental Trauma
17. Controversies and Cutting Edge
 a. Hypothermic Drowning Victims: Can There Be a Meaningful Recovery?
 b. Extracorporeal Circulation Versus Extracorporeal Membrane Oxygenation
 c. Prevention
18. Risk Management Pitfalls for Pediatric Drowning Victims
19. Time- and Cost-Effective Strategies
20. Case Conclusions
21. References (104)
22. CME Questions (10)

Tables & Figures
1. Methods of Rewarming a Hypothermic Patient After a Submersion Incident
2. Clinical Pathway for Pediatric Drowning Victims
3. Clinical Pathway for Hypothermic Pediatric Drowning Victims
4. Interventions that Reduce Drowning Rates in Developed Nations
Chapter 3. Pediatric Cervical Spine Injuries

The National Institute for Health and Care Excellence (NICE) published an updated guideline in February 2016 titled “Spinal Injury: Assessment and Initial Management.”¹ This guideline is similar to publications by the American Association of Neurological Surgeons and the Congress of Neurological Surgeons (AANS/CNS) in 2013,² with a few unique changes. As with previously published guidelines, the low incidence of pediatric spinal cord injury (SCI) and the paucity of research data limit the quality of evidence that would allow strong recommendations to be built.³ In the United States in 2009, the incidence of SCI was 24 per 1 million patients aged < 21 years.³ Additionally, there are no high-performing validated clinical decision rules for clearance of pediatric patients at risk for SCI.⁴⁻⁶ The complexity of creating these decision rules for pediatric patients increases, given the unique injury patterns that change relative to patient age, changes in spinal musculoskeletal development of pediatric patients, and the varying injury mechanisms.⁵⁻⁷ The aim of the NICE guideline is to limit harm – from ionizing radiation, missed injury, and unnecessary immobilization or testing – while providing safe, efficient, and cost-effective care. It should be noted that the age cutoff in the 2016 NICE guideline is patient age < 16 years, whereas the AANS/CNS guidelines have a patient cutoff age of < 18 years and the American College of Radiology (ACR) uses an age cutoff of < 14 years in their Appropriateness Criteria.¹,²,⁸

Translating the more robust adult trauma data to pediatric patients is commonplace and necessary when there are no large, high-quality pediatric studies. As such, the Canadian C-Spine Rule (CCR) and the National Emergency X-Radiography Utilization Study (NEXUS) clinical decision rules have been the foundation for determining pediatric cervical spine clearance.⁹⁻¹⁰ Though neither the CCR nor NEXUS have been found to be well-performing with pediatric patients, the NICE guideline incorporates both the NEXUS low-risk criteria and the CCR for the immobilization and potential cervical spine imaging decision point. The authors of the NICE guideline address this by stating that “the benefits of using a risk tool, particularly in avoiding unnecessary imaging, in children outweigh the risks of not using a tool.”¹ Of note, the NEXUS criteria have added 2 new conditions, priapism and higher risk of spinal complication, in the initial assessment. The NICE guideline makes special mention for clinicians to “be aware that applying the Canadian C-Spine Rule to children is difficult and the child’s developmental stage should be taken into account.”

The ACR Appropriateness Criteria® note that “there is not sufficient evidence to establish the reliability of the NEXUS criteria in younger children, or to recommend whether radiography or CT [computed tomography] should be the initial imaging study.”¹ The NICE guideline recommends magnetic resonance imaging (MRI) as the initial imaging modality of choice for high suspicion of injury and only mention CT imaging when discussing high suspicion for thoracic or lumbosacral injury after abnormal plain radiographs.¹ Moving directly to MRI may bypass the clinicoradiologic mismatch of neurologic injuries and normal plain radiographs of CT imaging, as seen in SCI without radiologic abnormality (SCIWORA) or neuroimaging abnormality (SCI-WONA). SCIWORA and SCIWONA are managed with continued spinal immobilization, neurosurgical and spine surgical specialists, and often serial imaging, as dynamic changes may progress.¹¹⁻¹² A clinical management pathway and the thresholds for testing and treatment can be found in Figure 1, page 60.

The theme of decreasing harm begins with the NICE guideline recommendation that a family member or caregiver should be present, within eyesight, during initial evaluation and stabilization of the pediatric patient. Again, the guideline addresses taking into consideration the child’s developmental stage and cognitive function when assessing, treating, and discussing care with the patient and caregivers. As pediatric patients may not be able to verbalize or cooperate with physical examinations, it is often a loss of function (one that may be recognized only with caregiver input) that can raise suspicion for SCI. When spinal injuries are discovered, utilizing neurosurgical or spine surgery specialists – or transferring to a dedicated trauma center where resources are available – should be paramount. As with past updates to management of spinal cord injuries, no pharmacologic neuroprotective intervention, such as steroids or medications to decrease future neuropathic pain, were found to be clinically significant or recommended.¹,² As with all patient encounters, clear documentation of clinical findings, the thought process for medical decision-making, and input from specialty consultants should be included in the medical chart.
Chapter 3. Pediatric Cervical Spine Injuries

Table of Contents

Detailed Chapter Sections
1. Update On Management Of Pediatric Cervical Spine Injuries
 a. References (12)
2. Introduction
3. Practice Guideline Impact
5. Assessment Of The Guideline Methodology
6. Selected Guideline Recommendations Relevant To Emergency Medicine
 a. Determining Patients Who Can Be Cleared Without Imaging
 i. Editorial Comment
 b. Evaluation Of Potential Atlanto-Occipital Dislocation
 i. Editorial Comment
 c. Imaging For Atlantoaxial Rotatory Fixation
 i. Editorial Comment
 d. Recommended Immobilization Position
 i. Editorial Comment
 e. Spinal Cord Injury Without Radiographic Abnormality
 i. Editorial Comment
7. References (8)
8. CME Questions (4)

Tables & Figures
1. Clinical Pathway For Assessment Of The Pediatric Cervical Spine
2. Definition Of Level Of Evidence And Strength Of Recommendation Used In The American Association Of Neurological Surgeons And The Congress Of Neurological Surgeons Guidelines
3. AGREE Criteria For AANS/CNS Pediatric Cervical Spine And Spinal Cord Injury Guidelines
Chapter 4. Pediatric Nonaccidental Trauma

Introduction And Epidemiology

Child abuse is the general term for describing harm directed toward children. Many states recognize 4 major types of maltreatment in their definitions, including neglect, physical abuse, sexual abuse, and emotional abuse. According to the United States Department of Health & Human Services Child Welfare Information Gateway, child abuse is defined in the Federal Child Abuse Prevention and Treatment Act as “a recent act or failure to act on the part of a parent or caretaker which results in death, serious physical or emotional harm, sexual abuse or exploitation; or an act or failure to act which presents an imminent risk of serious harm.”1 The World Health Organization Report of the Consultation on Child Abuse Prevention from 1999 defines child abuse and maltreatment as “all forms of physical and/or emotional ill-treatment, sexual abuse, neglect or negligent treatment, or commercial or other exploitation, resulting in actual or potential harm to the child’s health, survival, development, or dignity in the context of a relationship of responsibility, trust, or power.”2

The National Child Abuse and Neglect Data System (NCANDS) is a voluntary organization that collects data on child maltreatment from all 50 states, the District of Columbia, and the Commonwealth of Puerto Rico. The latest NCANDS report, Child Maltreatment 2014, is the 25th printing and is available at the Administration for Children and Families website through the United States Department of Health & Human Services. In 2014, there were more than 3.2 million reported cases of potential child abuse in the United States.1 This represented 4.37% of the total population of children (74,356,370) at that time. One in 5 children (19.2%) who received a report had their cases substantiated and were found to be victims. Overall, the rate of child abuse has been estimated at almost 1 out of 10 children (9.4%), representing 702,008 victims.

Figure 1. Victims Of Child Abuse

![Pie chart showing the distribution of cases reported to child abuse.](Image)

- 702,008 victims
- 1 in 5 reported cases determined victims
- Physical abuse 17%
- Sexual abuse 8%
- Neglect 75%
- 3,248,005 cases reported

Reported cases in the 50 United States, Washington DC, and Puerto Rico.

Figure 2. 2014 Child Abuse Reporting Sources

![Pie chart showing the sources of child abuse reports.](Image)

- Professionals (daycare, educators, law enforcement, social services, foster care)
- Physicians
- Nonprofessionals
- Unclassified

In addition, 1,500 deaths are attributed to child abuse each year. While these numbers are significant, they likely underestimate the incidence of abuse, as well as the morbidity and mortality, due to cases that are not reported and court determinations of abuse.

The youngest populations are the most vulnerable. Three-quarters of children who suffered from neglect were in their first year of life, and infants had at least twice the rate of abuse compared to all other age groups. Physical abuse was confirmed in 17% of reports and sexual abuse in 8.3% of cases. For 2014, a nationally estimated 1580 children died as a result of abuse and neglect at a rate of 2.13 per 100,000
Chapter 4. Pediatric Nonaccidental Trauma

Table of Contents

Detailed Chapter Sections
1. Introduction And Epidemiology
2. Emergency Department Assessment And Management Strategies
 a. External Manifestations Of Trauma
 i. Bruising
 ii. Burns
 b. Fractures
 c. Head Injury
 d. Abdominal And Visceral Injuries
3. Documentation Pearls
4. Summary
5. References (45)
6. CME Questions (8)

Tables & Figures
1. Victims Of Child Abuse
2. 2014 Child Abuse Reporting Sources
3. Risk Factors For Child Abuse
4. Injury Patterns Suggestive Of Abuse
5. Locations Of Bruising Recorded On A Body Chart
6. Second-Degree Intentional Burn Injury
7. Accidental First- And Second-Degree Burn Injury
8. American College Of Radiology Appropriateness Criteria®
9. Features Associated With Possible Child Abuse
10. Anteroposterior Chest X-Ray Demonstrating Multiple Rib Fractures
11. Metaphyseal Fractures
12. Bilateral Subdural Hematoma On Head Computed Tomography And Magnetic Resonance Imaging
13. Three-Dimensional Reconstruction Of A Skull Fracture
14. Red Flags For Abuse
15. Resources For Reporting Suspected Abuse
Chapter 5. Orthopedic Trauma In Pediatric Sports Injuries

Introduction
In addition to school team sports, participation in recreational sports is an increasingly popular trend among adults and children. Sports participation exposes the pediatric population to orthopedic trauma that can present differently than that seen in the adult population. As many pediatric athletes now specialize in specific sports year-round at an earlier age, they are at increased risk for orthopedic injuries. As such, the emergency clinician must be acutely aware of the differences in injury patterns between pediatric and adult athletes, and must be prepared to properly manage a wide range of pediatric sports medicine conditions ranging from the benign to the emergent. This guide is meant to provide a brief overview of the types of orthopedic injuries that may be encountered in the pediatric athlete.

Epidemiology
Sports- and recreation-related injuries account for nearly 20% of visits to the emergency department (ED) annually for patients aged ≤ 19 years.1 Approximately 12 million children aged between 5 and 22 years suffer a sports-related injury each year in the United States, which leads to 20 million lost days of school and approximately $33 billion in health care costs.2 The rate of injuries can be expected to increase as more children participate in sports3 and as the ability to recognize and diagnose concussion improves. While data regarding incidence rates of injuries in pediatric athletes are limited and sometimes conflicting, one meta-analysis found injuries to be highest, in decreasing order, for boys, in football, hockey, and soccer, and for girls, in soccer, basketball, and gymnastics.4 Older boys and girls (aged 13 years to college-level play) are at higher risk for injuries than younger athletes, likely due to increased muscle mass, speed of sport, and force generated on contact in older athletes. While football and soccer account for a disproportionately high rate of injuries due to the frequency of concussions, the discussion of pediatric concussion and traumatic brain injury is beyond the scope of this chapter.

Pediatric athletes are at increased risk of orthopedic injury due to developing physeal plates, softer, more pliable bones, and the presence of vulnerable apophyses.5 Recent steps have been taken to recognize and reduce the risk of pediatric orthopedic injuries, such as monitoring pitch counts as proposed by prominent orthopedic surgeons and societies.6 According to one society group, the sports associated with the highest incidence of pediatric musculoskeletal injury were football, basketball, cycling, and roller sports.7 Children specializing in different sports involving the same muscle groups (eg, swimmers and baseball pitchers) were at higher risk for musculoskeletal injury than those emphasizing different muscle groups (eg, soccer and golf).

Sideline Coverage And Prehospital Care
The emergency clinician will encounter most pediatric patients with sports-related complaints either immediately after or within several days of the trauma. Most sports-related emergencies can be managed without the need for emergent interventions and are typically managed with simple splinting and referral. Injuries that require emergent stabilization and management in pediatric patients are similar to those seen in adults (eg, sudden cardiac death, epidural hematoma, etc).

Though emergency clinicians are sometimes required to serve as sideline physicians for collegiate and professional teams,8 the role of the clinician is more often to manage acute or subacute pediatric orthopedic injuries in the ED. Musculoskeletal injuries are typically reduced and/or splinted initially in the prehospital setting, thus, obtaining a complete history from the emergency medical services (EMS) transporter is critical. Specific history from EMS should include the mechanism of injury, the sport, and, if possible, the type of play in which the injury occurred (Was it on a punt return? Was the patient at the bottom of a
Chapter 5. Orthopedic Trauma In Pediatric Sports Injuries

Table of Contents

Detailed Chapter Sections

1. Introduction
2. Epidemiology
3. Sideline Coverage And Prehospital Care
4. Fractures
 a. Physeal Fractures
 i. Type I
 ii. Type II
 iii. Type III
 iv. Type IV
 v. Type V
 b. Torus Fractures
 c. Greenstick Fracture
 d. Stress Fractures
5. Cervical Spine Injuries
6. Muscle Contusions
7. Lumbar Spine Injuries
8. Elbow Injuries
9. Wrist Injuries
10. Hip Injuries
11. Shoulder Injuries
12. Knee Injuries
 a. Anterior Cruciate Ligament Injuries
 b. Posterior Cruciate Ligament Injuries
 c. Meniscal Injuries
 d. Other Knee Conditions
13. Ankle And Foot Injuries
 a. Weber A Fractures
 b. Weber B Fractures
 c. Weber C Fractures
 d. Other Ankle Conditions
14. Conclusion
15. References (49)
16. CME Questions (8)

Tables & Figures

1. Types Of Physeal Fractures
2. Torus Fracture In A 7-Year-Old Boy
3. Forearm Greenstick Fracture Management
4. Classification Of Stress Fractures By Risk
5. National Emergency X-Radiography Utilization Study Criteria
6. Spondyloysis
7. Meyerding Spondylolisthesis Classification
8. Ossification Centers Of The Pediatric Elbow
9. Pediatric Elbow Ossification Centers And Age Of Appearance On Imaging
10. Kienböck Disease Or Lunatomalacia On X-Ray
11. Management Of Supracondylar Fractures
12. X-Ray Evaluation Of Avulsion Of The Iliac Spine
13. Ottawa Knee Rule
14. Lachman Test
15. Anterior Drawer Test
16. Denis-Weber Ankle Fracture Classification System
17. Ottawa Ankle Rule
18. X-Ray Imaging Demonstrates A Pseudo-Jones Fracture
19. Köhler Disease Of The Navicular Bone
20. Diagnosis, Examination Findings, Plain Film Findings, And Disposition For Common Pediatric Sports Injuries
Get Timely, Concise, Clinical Reviews & Practical, Relevant CME with EB Medicine

EB Medicine has special deals for group practices, hospitals and health systems, academic medical centers, libraries, and other institutions with 10 or more clinicians. Our resources provide information and insight that can make an immediate impact on the way clinicians practice medicine—with the goals of improving patient outcomes, enhancing efficiency, and elevating quality of care. With a group subscription, you can realize the benefits of having uniform, consistent training tools; CME reporting, by clinician, when and how you want it; and a resource your clinicians recognize, appreciate, and value.

Group Subscription Benefits

- State-of-the-art resources that address the diagnosis and treatment of emergency conditions.
- CME reporting in your desired format and frequency.
- Customized educational modules (in trauma, stroke, and other treatment areas).
- Malpractice mitigation: pitfalls to avoid as well as common errors in the diagnosis, management, and disposition are included.
- An effective recruitment and retention tool that earns both loyalty and appreciation from your team.
- Substantially reduced subscription rates for 10 or more physicians.

Yes! Please contact me with more information on a group/institutional subscription or site license.

Full Name: ____________________________
Your Title: ____________________________
Organization: ________________________
Approximate # Of Emergency Clinicians: ____________
Phone Number: ________________________
Email: ________________________________

Resource(s) You Are Interested In (check all that apply):
- ED CLEAR (Clinical Learning to Eliminate Avoidable Risk)
- Emergency Medicine Practice
- Pediatric Emergency Medicine Practice
- Stroke CME
- Trauma CME
Comments: ___

Act now to learn more and start saving!

Contact our Business Development Team at 678-366-7933 or groups@ebmedicine.net.
Save As a Group!

EB Medicine has special deals for group practices, hospitals and health systems, academic medical centers, libraries, and other institutions with 10 or more clinicians who want our resources and CME. With a group subscription, you can realize the benefits of having uniform, consistent training tools; CME reporting, by clinician, when and how you want it; and a resource your clinicians recognize, appreciate, and value.

Here are four ways to save:
1. Substantially reduced journal subscription rates
2. Discounts on specialty CME resources and programs
3. One-stop shopping for trauma and stroke credits
4. Custom-built packages tailored to your training needs

10+? Call us.

Act now to learn more and start saving! Contact our Business Development Team at 678-366-7933 or groups@ebmedicine.net.

Group Pricing Guide - 2017

<table>
<thead>
<tr>
<th>Stretch your CME budget by ordering as a group. Deep discounts apply!</th>
<th>Emergency Medicine Practice</th>
<th>Pediatric Emergency Medicine Practice</th>
<th>Emergency Trauma Care</th>
<th>Emergency Stroke Care</th>
<th>Pediatric Emergency Trauma Care</th>
<th>ED CLEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP SIZE*</td>
<td>DISCOUNT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-19</td>
<td>35%</td>
<td>$349</td>
<td>$319</td>
<td>$219</td>
<td>$179</td>
<td>$169</td>
</tr>
<tr>
<td>10-19</td>
<td>35%</td>
<td>$226.85</td>
<td>$207.35</td>
<td>$142.35</td>
<td>$116.35</td>
<td>$109.85</td>
</tr>
<tr>
<td>20-49</td>
<td>40%</td>
<td>$319</td>
<td>$219</td>
<td>$179</td>
<td>$169</td>
<td>$230</td>
</tr>
<tr>
<td>20-49</td>
<td>40%</td>
<td>$209.40</td>
<td>$191.40</td>
<td>$131.40</td>
<td>$107.40</td>
<td>$101.40</td>
</tr>
<tr>
<td>50-99</td>
<td>45%</td>
<td>$219</td>
<td>$179</td>
<td>$129</td>
<td>$109.50</td>
<td>$102.95</td>
</tr>
<tr>
<td>50-99</td>
<td>45%</td>
<td>$191.95</td>
<td>$175.45</td>
<td>$120.45</td>
<td>$98.45</td>
<td>$92.95</td>
</tr>
<tr>
<td>100-199</td>
<td>50%</td>
<td>$179</td>
<td>$129</td>
<td>$109.50</td>
<td>$89.50</td>
<td>$84.50</td>
</tr>
<tr>
<td>100-199</td>
<td>50%</td>
<td>$157.05</td>
<td>$143.55</td>
<td>$98.55</td>
<td>$80.55</td>
<td>$76.05</td>
</tr>
<tr>
<td>200-499</td>
<td>55%</td>
<td>$129</td>
<td>$109.50</td>
<td>$89.50</td>
<td>$71.60</td>
<td>$67.60</td>
</tr>
<tr>
<td>200-499</td>
<td>55%</td>
<td>$122.15</td>
<td>$111.65</td>
<td>$76.65</td>
<td>$62.65</td>
<td>$59.15</td>
</tr>
<tr>
<td>500-799</td>
<td>60%</td>
<td>$109.50</td>
<td>$89.50</td>
<td>$71.60</td>
<td>$67.60</td>
<td>$67.60</td>
</tr>
<tr>
<td>500-799</td>
<td>60%</td>
<td>$122.15</td>
<td>$111.65</td>
<td>$76.65</td>
<td>$62.65</td>
<td>$59.15</td>
</tr>
<tr>
<td>800-1099</td>
<td>65%</td>
<td>$95.70</td>
<td>$76.70</td>
<td>$53.70</td>
<td>$45.70</td>
<td>$43.70</td>
</tr>
<tr>
<td>800-1099</td>
<td>65%</td>
<td>$69.80</td>
<td>$63.80</td>
<td>$43.80</td>
<td>$35.80</td>
<td>$33.80</td>
</tr>
<tr>
<td>1100-1500</td>
<td>70%</td>
<td>$85.70</td>
<td>$76.70</td>
<td>$53.70</td>
<td>$45.70</td>
<td>$43.70</td>
</tr>
<tr>
<td>1100-1500</td>
<td>70%</td>
<td>$69.80</td>
<td>$63.80</td>
<td>$43.80</td>
<td>$35.80</td>
<td>$33.80</td>
</tr>
<tr>
<td>1501-2000</td>
<td>80%</td>
<td>$35.80</td>
<td>$31.80</td>
<td>$23.80</td>
<td>$15.80</td>
<td>$13.80</td>
</tr>
<tr>
<td>1501-2000</td>
<td>80%</td>
<td>$69.80</td>
<td>$63.80</td>
<td>$43.80</td>
<td>$35.80</td>
<td>$33.80</td>
</tr>
<tr>
<td>2001+</td>
<td>83%</td>
<td>$28.73</td>
<td>$24.73</td>
<td>$16.73</td>
<td>$10.73</td>
<td>$9.73</td>
</tr>
<tr>
<td>2001+</td>
<td>83%</td>
<td>$59.33</td>
<td>$54.23</td>
<td>$37.23</td>
<td>$30.43</td>
<td>$28.73</td>
</tr>
</tbody>
</table>

*Based on number of subscriptions/products ordered. Additional discounts available for multi-product purchases for your group.