The 2012 Lifelong Learning and Self-Assessment Study Guide
The 2012 Lifelong Learning And Self-Assessment Study Guide

CEO: Robert Williford
President and Publisher: Stephanie Ivy
Director of Member Services: Liz Alvarez
Managing Editor and CME Director: Jennifer Pai
Managing Editor: Dorothy Whisenhunt
Marketing Coordinator: Robin Williford

Direct all questions to EB Medicine:
1-800-249-5770 or 1-678-366-7933 • Fax: 1-770-500-1316
EB Medicine • 5550 Triangle Pkwy, Suite 150 • Norcross, GA 30092
E-mail: ebm@ebmedicine.net • Website: http://www.ebmedicine.net

The 2012 Lifelong Learning And Self-Assessment Study Guide is published by EB Medicine, 5550 Triangle Pkwy, Suite 150, Norcross, GA 30092. Opinions expressed are not necessarily those of this publication. Mention of products or services does not constitute endorsement. This publication is intended as a general guide and is intended to supplement, rather than substitute, professional judgment. It covers highly technical and complex subjects and should not be used for making specific medical decisions. The materials contained herein are not intended to establish policy, procedure, or standard of care. The 2012 LLSA Study Guide and Emergency Medicine Practice are trademarks of EB Medicine. © 2011 EB Medicine. All rights reserved. No part of this publication may be reproduced in any format without written consent of EB Medicine. Price: $199. Call 1-800-249-5770 to ask about multiple-copy discounts.

For a complete explanation of Emergency Medicine Continuous Certification, including the Lifelong Learning And Self-Assessment component, please visit the American Board of Emergency Medicine Web site at http://www.abem.org.

Brought to you exclusively by the publisher of:

EMERGENCY MEDICINE PRACTICE

AN EVIDENCE-BASED APPROACH TO EMERGENCY MEDICINE

Editor-in-Chief
Andy Jagoda, MD, FACEP
Professor and Chair, Department of Emergency Medicine, Mount Sinai School of Medicine, New York, NY

Editorial Board
William J. Brody, MD
Professor of Emergency Medicine and Medicine Chair, Resuscitation Committee & Medical Director, Emergency Preparedness and Response, University of Virginia Health System Operational Medical Director, Charlottesville-Albemarle Rescue Squad & Albemarle County Fire Rescue, Charlottesville, VA

Peter DeBlieux, MD
Louisiana State University Health Science Center Professor of Clinical Medicine, LSUHSC Interim Public Hospital Director of Emergency Medicine Services, LSUHSC Emergency Medicine Director of Faculty and Resident Development

Wyatt W. Decker, MD
Professor of Emergency Medicine, Mayo Clinic College of Medicine, Rochester, MN

Francis M. Fesmire, MD, FACEP Director, Heart-Stroke Center, Erlanger Medical Center; Assistant Professor, UT College of Medicine, Chattanooga, TN

Nicholas Genes, MD, PhD
Assistant Professor, Department of Emergency Medicine, Mount Sinai School of Medicine, New York, NY

Michael A. Gibbs, MD, FACEP
Assistant Professor, Department of Emergency Medicine, Maine Medical Center, Portland, ME; Tufts University School of Medicine, Boston, MA

Steven A. Godwin, MD, FACEP
Associate Professor, Associate Chair and Chief of Service, Department of Emergency Medicine, Assistant Dean, Simulation Education, University of Florida COM-Jacksonville, Jacksonville, FL

Gregory L. Henry, MD, FACEP
CEO, Medical Practice Risk Assessment, Inc.; Clinical Professor of Emergency Medicine, University of Michigan, Ann Arbor, MI

John M. Howell, MD, FACEP
Clinical Professor of Emergency Medicine, George Washington University, Washington, DC; Director of Academic Affairs, Best Practices, Inc, Inova Fairfax Hospitals, Falls Church, VA

Shikelzen Hoxhaj, MD, MPH, MBA
Chief of Emergency Medicine, Baylor College of Medicine, Houston, TX

Keith A. Marill, MD
Assistant Professor, Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA

Charles V. Pollack, Jr., MA, MD, FACEP
Chairman, Department of Emergency Medicine, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, PA

Michael S. Radeos, MD, MPH
Assistant Professor of Emergency Medicine, Weill Medical College of Cornell University, New York; Research Director, Department of Emergency Medicine, New York Hospital Queens, Flushing, New York

Robert L. Rogers, MD, FACEP, FAAEM, FACE
Assistant Professor of Emergency Medicine, The University of Maryland School of Medicine, Baltimore, MD

Alfred Sacchetti, MD, FACEP
Assistant Clinical Professor, Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA

Scott Silvers, MD, FACEP
Chair, Department of Emergency Medicine, Mayo Clinic, Jacksonville, FL

Corey M. Slovits, MD, FACP, FACEP
Professor and Chair, Department of Emergency Medicine, Vanderbilt University Medical Center; Medical Director, Nashville Fire Department and International Airport, Nashville, TN

Jenny Walker, MD, MPH, MSW
Assistant Professor, Departments of Preventive Medicine, Pediatrics, and Medicine Course Director, Mount Sinai Medical Center, New York, NY

Ron M. Walls, MD
Professor and Chair, Department of Emergency Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA

Scott Weingart, MD, FACEP
Assistant Professor of Emergency Medicine, Mount Sinai School of Medicine; Director of Emergency Critical Care, Elmhurst Hospital Center, New York, NY

International Editors
Peter Cameron, MD
Academic Director, The Alfred Emergency and Trauma Centre, Monash University, Melbourne, Australia

Giorgio Carbone, MD
Chief, Department of Emergency Medicine Ospedale Gradenigo, Torino, Italy

Amin Antoine Kazzi, MD, FAAEM
Associate Professor and Vice Chair, Department of Emergency Medicine, University of California, Irvine; American Medicine, Beirut, Lebanon

Hugo Peralta, MD
Chair of Emergency Services, Hospital Italiano, Buenos Aires, Argentina

Dhanadol Rojanasirikul, MD
Attending Physician, Emergency Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross, Thailand; Faculty of Medicine, Chulalongkorn University, Thailand

Maarten Simons, MD, PhD
Emergency Medicine Residency Director, OLVG Hospital, Amsterdam, The Netherlands

Senior Research Editor
Joseph D. Toescano, MD
Emergency Physician, Department of Emergency Medicine, San Ramon Regional Medical Center, San Ramon, CA

Research Editor
Matt Friedman, MD
Emergency Medicine Residency, Mount Sinai School of Medicine, New York, NY
CME Accreditation Information

This CME activity is sponsored by EB Medicine.

Release Date: June 1, 2011
Date of Most Recent Review: May 16, 2011
Date of Next Review: June 1, 2014
Termination Date: June 1, 2015
Time To Complete Activity: 35 hours

This activity has been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education.

Accreditation Statement: EB Medicine is accredited by the ACCME to provide continuing medical education for physicians.

Credit Designation Statement: EB Medicine designates this enduring material for a maximum of 35 AMA PRA Category 1 Credits™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

ACEP Accreditation: The 2012 Lifelong Learning and Self-Assessment Study Guide is approved by the American College of Emergency Physicians for 35 hours of ACEP Category I credit.

Needs Assessment: The need for this educational activity was determined by the American Board of Emergency Medicine, physician surveys, meetings with board-certified physicians, previous participant evaluations, and attendance at annual conferences.

Goals: The goal of this activity is to adequately prepare physicians for the annual American Board of Emergency Medicine examination.

Learning objectives: At the conclusion of this CME activity, you should be able to:

1. Compare the use of dopamine and norepinephrine in the treatment of shock.
2. Cite the association of ED lactate with mortality in older adults admitted with and without infections.
3. Cite the uses of postexposure prophylaxis for HIV infection in the ED.
4. Effectively treat infectious mononucleosis in the ED.
5. Cite critical issues in the management of adult patients who present to the ED with CAP.
6. Cite the key points in diagnosing and treating ectopic pregnancy in the ED.
7. Cite the effect of a bolus dose of etomidate on cortisol levels, mortality, and health services utilization.
8. Recognize patients with acute-onset floaters and flashes who are at risk for retinal detachment.
9. Recognize the association of corticosteroid dose and route of administration with risk of treatment failure in acute exacerbation of COPD.
10. Effectively manage the airway in obese patients in the ED.
11. Cite the differences between etomidate versus ketamine for RSI in acutely ill patients.
12. Cite the association between transfer of ED boarders to inpatient hallways and mortality.

Target Audience: This activity is intended for board certified emergency medicine physicians.
Course Director

Andy Jagoda, MD, FACEP
Professor and Chair, Department of Emergency Medicine, Mount Sinai School of Medicine; Medical Director, Mount Sinai Medical Center, New York, NY

Faculty

Antonio Brandt, MD
Attending Physician, North Sound Emergency Medicine, Everett, WA

Suzanne Bentley, MD
Pediatric Emergency Medicine Fellow, Department of Emergency Medicine, Mount Sinai Hospital, New York, NY

Manish Garg, MD
Associate Professor of Clinical Emergency Medicine, Temple University Hospital, Philadelphia, PA

Jenice Forde-Baker, MD
Attending Physician, Our Lady of Lourdes Hospital, Camden, NJ

John Lusk, MD, FACEP
Attending Physician, Department of Emergency Medicine, Providence Everett Regional Medical Center, Everett, WA

Nathan McNeil, MD
Attending Physician, Ruth and Harry Roman Department of Emergency Medicine, Cedars-Sinai Medical Center, Los Angeles, CA

James Miranda, MD
Emergency Medicine Resident Physician, Temple University Hospital, Philadelphia, PA

Meika T. Roberson, MD
Associate Director, Department of Emergency Medicine, St. Luke’s Cornwall Hospital, Newburgh, NY

Kaushal Shah, MD
Attending Physician, Department of Emergency Medicine, Mount Sinai Hospital, New York, NY

Alvin Wang, DO
Assistant Professor, Emergency Medicine, Associate Medical Director, Division of Emergency Medical Services, Temple University School of Medicine, Philadelphia, PA

Paula J. Whiteman, MD, FACEP, FAAP
Clinical Instructor of Medicine, UCLA School of Medicine, Los Angeles, CA; Attending Physician, Cedars-Sinai Medical Center, Los Angeles, CA; Attending Physician, Providence Tarzana Regional Medical Center, Tarzana, CA

Disclosure Information: It is the policy of EB Medicine to ensure objectivity, balance, independence, transparency, and scientific rigor in all CME-sponsored educational activities. All faculty participating in the planning or implementation of a sponsored activity are expected to disclose to the audience any relevant financial relationships and to assist in resolving any conflict of interest that may arise from the relationship. In compliance with all ACCME Essentials, Standards, and Guidelines, all faculty for this CME activity were asked to complete a full disclosure statement. The information received is as follows: Dr. Brandt, Dr. Bentley, Dr. Garg, Dr. Forde-Baker, Dr. Lusk, Dr. Jagoda, Dr. McNeil, Dr. Miranda, Dr. Roberson, Dr. Shah, Dr. Wang, Dr. Whiteman, and their related parties report no significant financial interest or other relationship with the manufacturer(s) of any commercial product(s) discussed in this educational presentation.

Discussion of Investigational Information: As part of this study guide, faculty may be presenting investigational information about pharmaceutical products that is outside of Food and Drug Administration approved labeling. Information presented as part of this activity is intended solely as continuing medical education and is not intended to promote off-label use of any pharmaceutical product.

Method of Participation: Read the printed material and complete the Answer And Evaluation Form on page 105 or online at www.ebmedicine.net/2012LLSACME

Copyright © 2011 EB Medicine. All rights reserved.

EB Medicine is not affiliated with any pharmaceutical company or medical device manufacturer and does not accept any commercial support.
1. Comparison of Dopamine and Norepinephrine in the Treatment of Shock
 Article Review | CME Questions | Article Reprint | Answers And Explanations
 3 | 5 | 7 | 106

2. Emergency Department Lactate Is Associated with Mortality in Older Adults Admitted With and Without Infections
 19 | 21 | 23 | 107

3. Postexposure Prophylaxis for HIV Infection
 33 | 35 | 37 | 108

4. Infectious Mononucleosis
 45 | 46 | 47 | 109

 55 | 58 | 59a | 110

6. Ectopic Pregnancy
 59 | 60 | 63 | 111

7. The Effect of a Bolus Dose of Etomidate on Cortisol Levels, Mortality, and Health Services Utilization: A Systematic Review
 73 | 75 | 77a | 112

8. Acute-Onset Floaters and Flashes: Is This Patient at Risk for Retinal Detachment?
 77 | 78 | 81a | 113

9. Association of Corticosteroid Dose and Route of Administration With Risk of Treatment Failure in Acute Exacerbation of Chronic Obstructive Pulmonary Disease
 81 | 84 | 85a | 115

10. Emergency Department Management of the Airway in Obese Adults
 85 | 87 | 89a | 117

11. Etomidate versus ketamine for rapid sequence intubation in acutely ill patients: a multicentre randomised controlled trial
 89 | 91 | 93 | 118

12. The Association Between Transfer of Emergency Department Boarders to Inpatient Hallways and Mortality: A 4-Year Experience
 101 | 102 | 105a | 120

To receive CME credit, complete the Answer And Evaluation Form on page 125 or online at www.ebmedicine.net/2012LLSACME
Dopamine is frequently used as first-line treatment of hypotension refractory to fluid resuscitation. The current American College of Cardiology/American Heart Association guidelines recommend dopamine as the first-choice agent to increase arterial pressure among patients who have hypotension as a result of an acute myocardial infarction. This study questions this recommendation.

Key Points

- Although there was no significant difference in the rate of death between patients with shock who were treated with dopamine as the first-line vasopressor agent and those who were treated with norepinephrine, the use of dopamine was associated with a greater number of adverse events.
- Dysrhythmic events among the patients treated with dopamine were greater than those treated with norepinephrine (207 events [24.1%] versus 102 events [12.4%], \(P < 0.001 \)).
- Subgroup analysis showed that dopamine, as compared with norepinephrine, was associated with an increased rate of death at 28 days among the 280 patients with cardiogenic shock but not among the 1044 patients with septic shock or the 263 with hypovolemic shock (\(P = 0.03 \) for cardiogenic shock, \(P = 0.19 \) for septic shock, and \(P = 0.84 \) for hypovolemic shock, in Kaplan–Meier analyses).
- Kaplan-Meier 28-day survival analysis for all causes of shock showed a trend toward decreased mortality in the norepinephrine group but was not statistically significant (\(P = 0.07 \) by log-rank test).

Introduction

Circulatory shock is a life-threatening condition associated with high mortality. Administration of fluids is often the first-line therapy but may not result in correction of the hypotension, so adrenergic agents are then required. Among these agents, dopamine and norepinephrine are used most frequently. They both influence alpha-adrenergic and beta-adrenergic receptors, except to different degrees. Norepinephrine affects alpha-adrenergic receptors more than beta-adrenergic receptors. This results in a rise in peripheral vascular resistance due to vasoconstriction of most vascular beds, including the kidney. The subsequent increase in blood pressure stimulates the baroreceptor reflex, resulting in a reflex bradycardia. Dopamine is the precursor to norepinephrine that is released from the adrenergic neuron. At lower doses, it stimulates beta-adrenergic cardiac receptors. At higher doses, it stimulates alpha-adrenergic receptors to a greater degree, resulting in vasoconstriction. In addition, stimulation of dopaminergic receptors in the peripheral mesenteric and renal vascular beds results in vasodilation, increasing splanchnic and renal perfusion. However, dopaminergic stimulation can have harmful immunologic effects by altering hypothalamo–pituitary function, resulting in a marked decrease in prolactin and growth hormone levels.

Consensus guidelines and expert recommendations suggest that either agent may be used as a first-choice vasopressor in patients with shock. However, observational studies have shown that the administration of dopamine may be associated with rates of death that are higher than those associated with the administration of norepinephrine. The Sepsis Occurrence in Acutely Ill Patients (SOAP) study, which involved 1058 patients who were in shock, showed that administration of dopamine was an independent risk factor for death in the intensive care unit (ICU). The study was designed to evaluate whether the choice of norepinephrine over dopamine as a first-line agent results in decreased mortality in patients with shock.

Methods

This study was a multicenter trial conducted in 8 centers in Belgium, Austria, and Spain between December 19, 2003 and October 6, 2007. All patients 18 years of age or older in whom a vasopressor agent was required for the treatment of shock were included in
The patient was considered to be in shock if the mean arterial pressure (MAP) was < 70 mm Hg or the systolic blood pressure was < 100 mm Hg despite a challenge with 1 liter of crystalloids or 500 mL of colloid — unless there was an elevation in central venous pressure (CVP) to > 12 mm Hg or in pulmonary-artery occlusion pressure to > 14 mm Hg. There also needed to be signs of tissue hypoperfusion (eg, altered mental state, mottled skin, urine output of < 0.5 mL per kilogram of body weight for 1 hour, or a serum lactate level of > 2 mmol per liter). Patients were excluded if they were younger than 18 years of age; had already received a vasopressor agent (dopamine, norepinephrine, epinephrine, or phenylephrine) for more than 4 hours during the current episode of shock; had a serious dysrhythmia, such as rapid atrial fibrillation (>160 beats per minute) or ventricular tachycardia; or had been declared brain-dead.

Protocol

Written informed consent was obtained from all patients or next of kin. Enrolled patients were randomized to treatment with dopamine or norepinephrine. Hospital care providers were blinded to treatment assignments. The dose was determined according to the patient’s body weight. Doses of dopamine could be increased or decreased by 2 mcg per kilogram per minute and doses of norepinephrine could be increased or decreased by 0.02 mcg per kilogram per minute (or more in emergency cases). The doctor in charge determined the target blood pressure for each individual patient. If the patient was still hypotensive after the maximum dose of either agent had been administered (20 mcg per kilogram per minute for dopamine or 0.19 mcg per kilogram per minute for norepinephrine), open-label norepinephrine was added.

If the patient was already being treated with a vasopressor at baseline, that agent was replaced as soon as possible with the trial-drug solution. If the patient was already receiving dopamine and this agent could not be discontinued after introduction of the trial-drug solution, the dopamine was replaced with an open-label norepinephrine infusion. Open-label dopamine was not allowed at any time. Epinephrine and vasopressin were used only as rescue therapy. Inotropic agents could be used, if needed, to increase cardiac output.

When the patients were weaned from vasopressor agents, any open-label norepinephrine that was being administered was withdrawn first, after which the trial-drug solution was withdrawn. If hypotension recurred, the trial-drug solution was resumed first (at the same maximal dose), and an open-label solution of norepinephrine was added if needed.

The study period lasted a maximum of 28 days. The study drug was re instituted, if necessary, in patients who were discharged from the ICU but were readmitted within 28 days after randomization, allowing maximal exposure to the study drug. After day 28, the choice of vasopressor agent was left to the discretion of the physician in charge.

If adverse events occurred during treatment with the study drug, the physician in charge could withdraw the patient from the study and switch him or her to open-label vasopressor therapy. All other treatment decisions were left to the discretion of the attending physicians.

End Points

The primary endpoint of the trial was the rate of death at 28 days. Adverse events were categorized as dysrhythmias (ie, ventricular tachycardia, ventricular fibrillation, or atrial fibrillation), myocardial necrosis, skin necrosis, ischemia in limbs or distal extremities, or secondary infections.

Statistical Analysis

On the basis of the results of the SOAP study, which showed a rate of death of 43% among patients receiving dopamine and a rate of 36% among patients receiving norepinephrine, the authors estimated that with 765 patients in each group the study would have 80% power to show a 15% relative difference in the rate of death at 28 days, at a 2-sided alpha level of 0.05. The study continued to enroll patients until one of the following predefined boundaries was met: superiority of norepinephrine over dopamine, superiority of dopamine over norepinephrine, or no difference between the two. On October 6, 2007, after analysis of the outcome in the first 1600 patients showed that 1 of the 3 predefined boundaries had been crossed, the statistician (who is also a physician) advised that the trial be stopped secondary to a lack of difference between treatments.

Results

There were no significant differences between the groups in the rate of death at 28 days or in the rates of death in the ICU, in the hospital, at 6 months, or at 12 months. (See Table 2, page 14.) Kaplan–Meier curves for estimated survival showed no significant differences in the outcome. (See Figure 2, page 14.) In subgroup analysis, the rate of death at 28 days was significantly higher among patients with cardiogenic shock who were treated with dopamine than among those with cardiogenic shock who were treated with norepinephrine ($P = 0.03$). (See Figure 3, page 16.) Dysrhythmias were more frequent in the dopamine treatment group than in the norepinephrine treatment group: 207 patients (24.1%) and 102 patients (12.4%), respectively ($P < 0.001$).
Critique

This multicenter randomized, blinded trial was unable to demonstrate any mortality benefit of norepinephrine over dopamine in shock, except for the subgroup of cardiogenic shock. If there is some mortality benefit in septic shock, as previously suggested in the SOAP trial, it is marginal.

CME Questions

1.1 According to this review, which of the following is often first-line therapy for patients in shock?
 a. Administration of fluids
 b. Administration of dopamine
 c. Administration of norepinephrine
 d. None of the above

1.2 Norepinephrine affects alpha-adrenergic receptors more than beta-adrenergic receptors.
 a. True
 b. False

1.3 Which of the following countries was not part of this study?
 a. Spain
 b. Norway
 c. Austria
 d. Belgium

1.4 Patients were excluded from this study if they:
 a. Were younger than 18 years of age
 b. Had already received a vasopressor agent (dopamine, norepinephrine, epinephrine, or phenylephrine) for more than 4 hours during the current episode of shock
 c. Had a serious dysrhythmia, such as rapid atrial fibrillation (> 160 beats per minute) or ventricular tachycardia or had been declared brain-dead
 d. All of the above

1.5 According to this review, there were significant differences between the groups in the rate of death at 28 days and in the rates of death in the ICU, in the hospital, at 6 months, or at 12 months.
 a. True
 b. False

Answers and explanations are on page 106.

To receive CME credit, complete the Answer And Evaluation Form on page 125 or online at www.ebmedicine.net/2012LLSACME
Comparison of Dopamine and Norepinephrine in the Treatment of Shock

Daniel De Backer, M.D., Ph.D., Patrick Biston, M.D., Jacques Devriendt, M.D., Christian Madl, M.D., Didier Chochrad, M.D., Cesar Aldecoa, M.D., Alexandre Brasseur, M.D., Pierre Defrance, M.D., Philippe Gottignies, M.D., and Jean-Louis Vincent, M.D., Ph.D., for the SOAP II Investigators*

ABSTRACT

BACKGROUND
Both dopamine and norepinephrine are recommended as first-line vasopressor agents in the treatment of shock. There is a continuing controversy about whether one agent is superior to the other.

METHODS
In this multicenter, randomized trial, we assigned patients with shock to receive either dopamine or norepinephrine as first-line vasopressor therapy to restore and maintain blood pressure. When blood pressure could not be maintained with a dose of 20 μg per kilogram of body weight per minute for dopamine or a dose of 0.19 μg per kilogram per minute for norepinephrine, open-label norepinephrine, epinephrine, or vasopressin could be added. The primary outcome was the rate of death at 28 days after randomization; secondary end points included the number of days without need for organ support and the occurrence of adverse events.

RESULTS
The trial included 1679 patients, of whom 858 were assigned to dopamine and 821 to norepinephrine. The baseline characteristics of the groups were similar. There was no significant between-group difference in the rate of death at 28 days (52.5% in the dopamine group and 48.5% in the norepinephrine group; odds ratio with dopamine, 1.17; 95% confidence interval, 0.97 to 1.42; P = 0.10). However, there were more arrhythmic events among the patients treated with dopamine than among those treated with norepinephrine (207 events [24.1%] vs. 102 events [12.4%], P<0.001).

A subgroup analysis showed that dopamine, as compared with norepinephrine, was associated with an increased rate of death at 28 days among the 280 patients with cardiogenic shock but not among the 1044 patients with septic shock or the 263 with hypovolemic shock (P=0.03 for cardiogenic shock, P=0.19 for septic shock, and P=0.84 for hypovolemic shock, in Kaplan–Meier analyses).

CONCLUSIONS
Although there was no significant difference in the rate of death between patients with shock who were treated with dopamine as the first-line vasopressor agent and those who were treated with norepinephrine, the use of dopamine was associated with a greater number of adverse events. (ClinicalTrials.gov number, NCT00314704.)
Circulatory shock is a life-threatening condition that is associated with high mortality. The administration of fluids, which is the first-line therapeutic strategy, is often insufficient to stabilize the patient’s condition, and adrenergic agents are frequently required to correct hypotension. Among these agents, dopamine and norepinephrine are used most frequently. Both of these agents influence alpha-adrenergic and beta-adrenergic receptors, but to different degrees. Alpha-adrenergic effects increase vascular tone but may decrease cardiac output and regional blood flow, especially in cutaneous, splanchnic, and renal beds. Beta-adrenergic effects help to maintain blood flow through inotropic and chronotropic effects and to increase splanchnic perfusion. This beta-adrenergic stimulation can have unwanted consequences as well, including increased cellular metabolism and immunosuppressive effects. Dopamine also stimulates dopaminergic receptors, resulting in a proportionately greater increase in splanchnic and renal perfusion, and it may facilitate resolution of lung edema. However, dopaminergic stimulation can have harmful immunologic effects by altering hypothalamic-pituitary function, resulting in a marked decrease in prolactin and growth hormone levels.

Thus, dopamine and norepinephrine may have different effects on the kidney, the splanchnic region, and the pituitary axis, but the clinical implications of these differences are still uncertain. Consensus guidelines and expert recommendations suggest that either agent may be used as a first-choice vasopressor in patients with shock. However, observational studies have shown that the administration of dopamine may be associated with rates of death that are higher than those associated with the administration of norepinephrine. The Sepsis Occurrence in Acutely Ill Patients (SOAP) study, which involved 1058 patients who were in shock, showed that administration of dopamine was an independent risk factor for death in the intensive care unit (ICU). In a meta-analysis, only three randomized studies, with a total of just 62 patients, were identified that compared the effects of dopamine and norepinephrine in patients with septic shock. The lack of data from clinical trials in the face of growing observational evidence that norepinephrine may be associated with better outcomes called for a randomized, controlled trial. Our study was designed to evaluate whether the choice of norepinephrine over dopamine as the first-line vasopressor agent could reduce the rate of death among patients in shock.

METHODS

STUDY PATIENTS

We conducted this multicenter trial between December 19, 2003, and October 6, 2007, in eight centers in Belgium, Austria, and Spain. All patients 18 years of age or older in whom a vasopressor agent was required for the treatment of shock were included in the study. The patient was considered to be in shock if the mean arterial pressure was less than 70 mm Hg or the systolic blood pressure was less than 100 mm Hg despite the fact that an adequate amount of fluids (at least 1000 ml of crystalloids or 500 ml of colloids) had been administered (unless there was an elevation in the central venous pressure to >12 mm Hg or in pulmonary-artery occlusion pressure to >14 mm Hg) and if there were signs of tissue hypoperfusion (e.g., altered mental state, mottled skin, urine output of <0.5 ml per kilogram of body weight for 1 hour, or a serum lactate level of >2 mmol per liter). Patients were excluded if they were younger than 18 years of age; had already received a vasopressor agent (dopamine, norepinephrine, epinephrine, or phenylephrine) for more than 4 hours during the current episode of shock; had a serious arrhythmia, such as rapid atrial fibrillation (>160 beats per minute) or ventricular tachycardia; or had been declared brain-dead.

PROTOCOL

Randomization was performed in computer-generated, permuted blocks of 6 to 10, stratified according to the participating ICU. Treatment assignments and a five-digit reference number were placed in sealed, opaque envelopes, which were opened by the person responsible for the preparation of the trial-drug solutions. The solutions of norepinephrine or dopamine were prepared in vials or syringes according to the preference of the local ICU. Each vial or syringe was then labeled with its randomly allocated number. The doctors and nurses administering the drugs, as well as the local investigators and research personnel who collected data, were unaware of the treatment assignments. The trial was approved by the ethics committee at each participating center. Written informed consent was obtained from all patients or next of kin.
The dose was determined according to the patient’s body weight. Doses of dopamine could be increased or decreased by 2 μg per kilogram per minute and doses of norepinephrine by 0.02 μg per kilogram per minute (or more in emergency cases) (see Fig. 1 and 2 in the Supplementary Appendix, available with the full text of this article at NEJM.org). An example of the dose-escalation table is provided in Table 1 in the Supplementary Appendix. The target blood pressure was determined by the doctor in charge for each individual patient. If the patient was still hypotensive after the maximum dose of either agent had been administered (20 μg per kilogram per minute for dopamine or 0.19 μg per kilogram per minute for norepinephrine) — doses that have been shown to have similar effects on mean arterial blood pressure12,13), open-label norepinephrine was added. The dose of 20 μg per kilogram per minute for dopamine was selected as the maximal dose because this upper limit was the standard of care in the participating ICUs, in line with expert recommendations14 and international guidelines.15

If the patient was already being treated with a vasopressor at baseline, that agent was replaced as soon as possible with the trial-drug solution. If the patient was already receiving dopamine and this agent could not be discontinued after introduction of the trial-drug solution, the dopamine was replaced with an open-label norepinephrine infusion. Open-label dopamine was not allowed at any time. Epinephrine and vasopressin were used only as rescue therapy. Inotropic agents could be used, if needed, to increase cardiac output.

When the patients were weaned from vasopressor agents, any open-label norepinephrine that was being administered was withdrawn first, after which the trial-drug solution was withdrawn. If hypotension recurred, the trial-drug solution was resumed first (at the same maximal dose) and an open-label solution of norepinephrine was added if needed.

The study period lasted a maximum of 28 days. The study drug was reinstituted, if necessary, in patients who were discharged from the ICU but were readmitted within 28 days after randomization, allowing maximal exposure to the study drug. After day 28, the choice of vasopressor agent was left to the discretion of the physician in charge.

If adverse events occurred during treatment with the study drug, the physician in charge could withdraw the patient from the study and switch him or her to open-label vasopressor therapy. All other treatment decisions were left to the discretion of the attending physicians.

END POINTS

The primary end point of the trial was the rate of death at 28 days. Secondary end points were the rates of death in the ICU, in the hospital, at 6 months, and at 12 months; the duration of stay in the ICU; the number of days without need for organ support (i.e., vasopressors, ventilators, or renal-replacement therapy); the time to attainment of hemodynamic stability (i.e., time to reach a mean arterial pressure of 65 mm Hg)16; the changes in hemodynamic variables; and the use of dobutamine or other inotropic agents. Adverse events were categorized as arrhythmias (i.e., ventricular tachycardia, ventricular fibrillation, or atrial fibrillation), myocardial necrosis, skin necrosis, ischemia in limbs or distal extremities, or secondary infections.17

MEASURED VARIABLES

The following data were recorded every 6 hours for 48 hours, every 8 hours on days 3, 4, and 5, and once a day on days 6, 7, 14, 21, and 28: vital signs, hemodynamic variables (including systolic and diastolic arterial pressures, heart rate, central venous pressure, and, when possible, pulmonary-artery pressures), cardiac output, arterial and mixed-venous (or central venous) blood gas levels, doses of vasoactive agents, and respiratory conditions. Biologic variables, data on daily fluid balance, microbiologic data, and antibiotic therapy were recorded daily for the first 7 days and then on days 14, 21, and 28.

The Acute Physiology and Chronic Health Evaluation II (APACHE II) score18 was calculated at the time of admission to the ICU and at the time of enrollment in the study, and the Sequential Organ Failure Assessment (SOFA) score19 was calculated daily for the first 7 days and then on days 14, 21, and 28.

STATISTICAL ANALYSIS

On the basis of the results of the SOAP study,3 which showed a rate of death of 43% among patients receiving dopamine and a rate of 36% among patients receiving norepinephrine, we estimated that with 765 patients in each group, the study would have 80% power to show a 15% relative dif-
ference in the rate of death at 28 days, at a two-sided alpha level of 0.05.

Since the magnitude of the effect derived from observational studies can be misleading, we opted for a sequential trial design with two-sided alternatives; the trial design called for analyses to be performed after inclusion of the first 50 and 100 patients, and then after inclusion of each additional 100 patients, and allowed for the discontinuation of the trial according to the following predefined boundaries: superiority of norepinephrine over dopamine, superiority of dopamine over norepinephrine, or no difference between the two. An independent statistician who is also a physician monitored the efficacy analyses and the adverse events; on October 6, 2007, after analysis of the outcome in the first 1600 patients showed that one of the three predefined boundaries had been crossed, the statistician advised that the trial be stopped.

All data were analyzed according to the intention-to-treat principle. Differences in the primary outcome were analyzed with the use of an unadjusted chi-square test. Results are presented as absolute and relative risks and 95% confidence intervals. Kaplan–Meier curves for estimated survival were compared with the use of a log-rank test. A Cox proportional-hazards regression model was used to evaluate the influence of potential confounding factors on the outcome (factors were selected if the P value in the univariate analysis was <0.20).

A predefined subgroup analysis of the primary outcome was conducted according to the type of shock (septic, cardiogenic, or hypovolemic). A test for interaction was performed, and the results are presented in a forest plot.

Other binary end points were analyzed with the use of chi-square tests, and continuous variables were compared by means of an unpaired Student’s t-test or a Wilcoxon rank-sum test, as appropriate, with the use of SPSS software, version 13.0 (SPSS). All reported P values are two-sided and have not been adjusted for multiple testing. The study statistician and investigators remained unaware of the patients’ treatment assignments while they performed the final analyses.

RESULTS

PATIENTS

A total of 1679 patients were enrolled — 858 in the dopamine group and 821 in the norepinephrine group (Fig. 1). All patients were followed to day 28; data on the outcome during the stay in the hospital were available for 1656 patients (98.6%), data on the 6-month outcome for 1443 patients (85.9%), and data on the 12-month outcome for 1036 patients (61.7%). There were no significant differences between the two groups with regard to most of the baseline characteristics (Table 1); there were small differences, which were of questionable clinical relevance, in the heart rate, partial pressure of arterial carbon dioxide (PaCO$_2$), arterial oxygen saturation (SaO$_2$), and ratio of partial pressure of arterial oxygen (PaO$_2$) to fraction of inspired oxygen (FiO$_2$). The type of shock that was seen most frequently was septic shock (in 1044 patients [62.2%]), followed by cardiogenic shock (in 280 patients [16.7%]) and hypovolemic shock (in 263 patients [15.7%]). The sources of sepsis are detailed in Table 2 in the Supplementary Appendix. Hydrocortisone was administered in 344 patients who received dopamine (40.1%) and in 326 patients who received norepinephrine (39.7%). Among patients with septic shock, recombinant activated human protein C was administered in 102 patients in the dopamine group (18.8%) and 96 patients in the norepinephrine group (19.1%).

Data on hemodynamic variables and doses of vasoactive agents are shown in Figure 3 and Figure 4 in the Supplementary Appendix. The mean arterial pressure was similar in the two treatment groups at baseline, and it changed similarly over time, although it was slightly higher from 12 to 24 hours in the norepinephrine group. The doses of the study drug were similar in the two groups at all times. More patients in the dopamine group than in the norepinephrine group required open-label norepinephrine therapy at some point (26% vs. 20%, P<0.001), but the doses of open-label norepinephrine that were administered were similar in the two groups. The use of open-label epinephrine at any time was similar in the two groups (administered in 3.5% of patients in the dopamine group and in 2.3% of those in the norepinephrine group, P=0.10), as was the use of vasopressin (0.2% in both groups, P=0.67). Dobutamine was used more frequently in patients treated with norepinephrine, but 12 hours after randomization, the doses of dobutamine were significantly higher in patients treated with dopamine. The mean (±SD) time to the achievement of a mean arterial pressure of 65 mm Hg was similar in the two groups (6.3±5.6 hours in the dopamine group and 6.0±4.9 hours in the norepinephrine group,
P = 0.35). There were no major between-group differences in the total amounts of fluid given, although patients in the dopamine group received more fluids on day 1 than did patients in the norepinephrine group. Urine output was significantly higher during the first 24 hours after randomization among patients in the dopamine group than among those in the norepinephrine group, but this difference eventually disappeared, so that the fluid balance was quite similar between the two groups.

The increase in heart rate was greater in patients treated with dopamine than in patients treated with norepinephrine, up to 36 hours after randomization; the changes in the cardiac index, central venous pressure, venous oxygen saturation, and lactate levels were similar in the two groups.

OUTCOME

The boundary for stopping the trial owing to the lack of evidence of a difference between treatments at a P value of 0.05 was crossed (Fig. 5 in the Supplementary Appendix). There were no significant differences between the groups in the rate of death at 28 days or in the rates of death in the ICU, in the hospital, at 6 months, or at 12 months (Table 2). Kaplan–Meier curves for estimated survival showed no significant differences in the outcome (Fig. 2). Cox proportional-hazards analyses that included the APACHE II score, sex, and other relevant variables yielded similar results (Fig. 6 in the Supplementary Appendix). There were more days without need for the trial drug and more days without need for open-label vasopressors in the norepinephrine group than in the dopamine group, but there were no significant differences between the groups in the number of days without need for ICU care and in the number of days without need for organ support (Table 3). There were no significant differences in the causes of death between the two groups, although death from refractory shock occurred more frequently in the group of patients treated with dopamine than in the group treated with norepinephrine (P = 0.05).

ADVERSE EVENTS

Overall, 309 patients (18.4%) had an arrhythmia; the most common type of arrhythmia was atrial fibrillation, which occurred in 266 patients (86.1%). More patients had an arrhythmia, especially atrial fibrillation, in the dopamine group than in the norepinephrine group (Table 3). The study drug was discontinued in 65 patients owing to severe arrhythmias — 52 patients (6.1%) in the dopamine group and 13 patients (1.6%) in the norepinephrine group (P < 0.001). These patients were included in the intention-to-treat analysis. There were no significant differences between the groups in the incidences of other adverse events.

ADDITIONAL ANALYSES

A predefined subgroup analysis was conducted according to the type of shock — septic shock, which occurred in 1044 patients (542 in the dopamine group and 502 in the norepinephrine group); cardiogenic shock, which occurred in 280 patients (135 in the dopamine group and 145 in the norepinephrine group); or hypovolemic shock, which occurred in 263 patients (138 in the dopamine group and 125 in the norepinephrine group). The overall effect of treatment did not differ significantly among these subgroups (P = 0.87 for interaction), although the rate of death at 28 days was significantly higher among patients with cardiogenic shock who were treated with dopamine than among those with cardiogenic shock who were treated with norepinephrine (P = 0.03) (Fig. 3). The
Table 1. Baseline Characteristics of the Patients and Major Therapeutic Interventions at Baseline.*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dopamine (N = 858)</th>
<th>Norepinephrine (N = 821)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age — yr</td>
<td>68</td>
<td>67</td>
</tr>
<tr>
<td>Interquartile range</td>
<td>55–76</td>
<td>56–76</td>
</tr>
<tr>
<td>Male sex — no. (%)</td>
<td>507 (59.1)</td>
<td>449 (54.7)</td>
</tr>
<tr>
<td>APACHE II score†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Interquartile range</td>
<td>15–28</td>
<td>14–27</td>
</tr>
<tr>
<td>SOFA score‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Interquartile range</td>
<td>7–12</td>
<td>6–12</td>
</tr>
<tr>
<td>Reason for admission — no. (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical</td>
<td>565 (65.9)</td>
<td>532 (64.8)</td>
</tr>
<tr>
<td>Scheduled surgery</td>
<td>168 (19.6)</td>
<td>161 (19.6)</td>
</tr>
<tr>
<td>Emergency surgery</td>
<td>125 (14.6)</td>
<td>128 (15.6)</td>
</tr>
<tr>
<td>Cause of shock — no. (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepsis</td>
<td>542 (63.2)</td>
<td>502 (61.1)</td>
</tr>
<tr>
<td>Lungs</td>
<td>278 (32.4)</td>
<td>246 (30.0)</td>
</tr>
<tr>
<td>Abdomen</td>
<td>138 (16.1)</td>
<td>135 (16.4)</td>
</tr>
<tr>
<td>Urine</td>
<td>51 (5.9)</td>
<td>42 (5.1)</td>
</tr>
<tr>
<td>Catheter</td>
<td>14 (1.6)</td>
<td>10 (1.2)</td>
</tr>
<tr>
<td>Endocardium</td>
<td>9 (1.0)</td>
<td>11 (1.3)</td>
</tr>
<tr>
<td>Mediastinum</td>
<td>10 (1.2)</td>
<td>15 (1.8)</td>
</tr>
<tr>
<td>Soft tissues</td>
<td>11 (1.3)</td>
<td>13 (1.6)</td>
</tr>
<tr>
<td>Other</td>
<td>15 (1.7)</td>
<td>20 (2.4)</td>
</tr>
<tr>
<td>Cardiogenic source</td>
<td>135 (15.7)</td>
<td>145 (17.6)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>75 (8.7)</td>
<td>86 (10.5)</td>
</tr>
<tr>
<td>Dilated cardiomyopathy</td>
<td>25 (2.9)</td>
<td>19 (2.3)</td>
</tr>
<tr>
<td>Tamponade</td>
<td>2 (0.2)</td>
<td>7 (0.9)</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>10 (1.2)</td>
<td>8 (1.0)</td>
</tr>
<tr>
<td>Valvular disease</td>
<td>4 (0.5)</td>
<td>5 (0.6)</td>
</tr>
<tr>
<td>After cardiopulmonary bypass</td>
<td>19 (2.2)</td>
<td>20 (2.4)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypovolemia</td>
<td>138 (16.1)</td>
<td>125 (15.2)</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>130 (15.2)</td>
<td>116 (14.1)</td>
</tr>
<tr>
<td>Trauma</td>
<td>17 (2.0)</td>
<td>23 (2.8)</td>
</tr>
<tr>
<td>Gastrointestinal bleeding</td>
<td>31 (3.6)</td>
<td>22 (2.7)</td>
</tr>
<tr>
<td>Bleeding at surgical site</td>
<td>64 (7.5)</td>
<td>57 (6.9)</td>
</tr>
<tr>
<td>Other</td>
<td>18 (2.1)</td>
<td>14 (1.7)</td>
</tr>
<tr>
<td>Dehydration</td>
<td>8 (0.9)</td>
<td>9 (1.1)</td>
</tr>
<tr>
<td>Other</td>
<td>48 (5.9)</td>
<td>44 (5.0)</td>
</tr>
<tr>
<td>Spinal</td>
<td>6 (0.7)</td>
<td>8 (1.0)</td>
</tr>
<tr>
<td>Peridural§</td>
<td>13 (1.5)</td>
<td>4 (0.5)</td>
</tr>
<tr>
<td>Intoxication-related¶</td>
<td>7 (0.8)</td>
<td>4 (0.5)</td>
</tr>
<tr>
<td>Anaphylactic</td>
<td>3 (0.3)</td>
<td>4 (0.5)</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>13 (1.5)</td>
<td>29 (3.5)</td>
</tr>
<tr>
<td>Hemodynamic, respiratory, and biologic variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature — °C</td>
<td>36.6±1.5</td>
<td>36.6±1.5</td>
</tr>
<tr>
<td>Heart rate — beats/min</td>
<td>97±27</td>
<td>95±25</td>
</tr>
<tr>
<td>Mean arterial pressure — mm Hg**</td>
<td>58±13</td>
<td>58±13</td>
</tr>
<tr>
<td>Mean pulmonary-artery pressure — mm Hg**</td>
<td>27±9</td>
<td>29±8</td>
</tr>
</tbody>
</table>

*From the 2012 Lifelong Learning and Self-Assessment Study Guide.
Table 1. (Continued.)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dopamine (N = 858)</th>
<th>Norepinephrine (N = 821)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary-artery occlusion pressure</td>
<td>16±6</td>
<td>18±6</td>
</tr>
<tr>
<td>Central venous pressure — mm Hg**</td>
<td>13±6</td>
<td>13±5</td>
</tr>
<tr>
<td>Cardiac index — liters/min/m²‡‡</td>
<td>3.11±1.35</td>
<td>2.77±1.16</td>
</tr>
<tr>
<td>Arterial pH</td>
<td>7.32±0.13</td>
<td>7.32±0.14</td>
</tr>
<tr>
<td>PaCO₂ — mm Hg</td>
<td>42±16</td>
<td>41±14</td>
</tr>
<tr>
<td>PaO₂ — mm Hg</td>
<td>110±75</td>
<td>123±84§§</td>
</tr>
<tr>
<td>SaO₂ — %</td>
<td>95±5</td>
<td>96±4§§</td>
</tr>
<tr>
<td>SvO₂ — %</td>
<td>64±9</td>
<td>62±13</td>
</tr>
<tr>
<td>Lactate — mmol/liter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Interquartile range</td>
<td>1.2–4.3</td>
<td>1.2–3.8</td>
</tr>
<tr>
<td>Hemoglobin — g/dl</td>
<td>9.8±2.5</td>
<td>9.9±2.5</td>
</tr>
<tr>
<td>Creatinine — mg/dl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Interquartile range</td>
<td>0.8–2.4</td>
<td>0.8–2.3</td>
</tr>
<tr>
<td>Respiratory rate — per min</td>
<td>21±8</td>
<td>21±8</td>
</tr>
<tr>
<td>Ratio of PaO₂ to FiO₂</td>
<td>210±157</td>
<td>236±165§§</td>
</tr>
<tr>
<td>Major therapeutic interventions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical ventilation — no. (%)</td>
<td>615 (71.7)</td>
<td>580 (70.6)</td>
</tr>
<tr>
<td>Tidal volume — ml/kg of ideal body weight</td>
<td>8.0±1.9</td>
<td>7.9±1.9</td>
</tr>
<tr>
<td>Positive end-expiratory pressure — cm of water</td>
<td>6±3</td>
<td>6±2</td>
</tr>
<tr>
<td>FiO₂</td>
<td>0.59±0.24</td>
<td>0.58±0.23</td>
</tr>
<tr>
<td>Renal-replacement therapy — no. (%)</td>
<td>63 (7.3)</td>
<td>61 (7.4)</td>
</tr>
<tr>
<td>Open-label norepinephrine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients treated — no. (%)</td>
<td>157 (18.3)</td>
<td>107 (13.0)</td>
</tr>
<tr>
<td>Dose — μg/kg/min</td>
<td>0.58±0.80</td>
<td>0.54±0.87</td>
</tr>
<tr>
<td>Epinephrine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients treated — no. (%)</td>
<td>13 (1.5)</td>
<td>9 (1.1)</td>
</tr>
<tr>
<td>Dose — μg/kg/min</td>
<td>1.1±2.8</td>
<td>1.3±1.9</td>
</tr>
<tr>
<td>Dobutamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients treated — no. (%)</td>
<td>127 (14.8)</td>
<td>159 (19.4)%</td>
</tr>
<tr>
<td>Dose — μg/kg/min</td>
<td>10±6</td>
<td>9±6</td>
</tr>
<tr>
<td>Vasopressin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients treated — no. (%)</td>
<td>2 (0.2)</td>
<td>2 (0.2)</td>
</tr>
<tr>
<td>Dose — U/min</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Corticosteroids — no. (%)‖‖</td>
<td>101 (11.8)</td>
<td>76 (9.3)</td>
</tr>
</tbody>
</table>

* Plus–minus values are means ±SD. To convert the values for creatinine to micromoles per liter, multiply by 88.4. FiO₂ denotes fraction of inspired oxygen, PaCO₂ partial pressure of arterial carbon dioxide, PaO₂ partial pressure of arterial oxygen, SaO₂ arterial oxygen saturation, and SvO₂ venous oxygen saturation.
† Scores on the Acute Physiologic and Chronic Health Evaluation II (APACHE II) scale range from 0 to 71, with higher values indicating more severe disease.18
‡ Scores on the Sequential Organ Failure Assessment (SOFA) scale range from 0 to 4 for each organ system, with higher scores indicating more severe organ dysfunction.19
§ Peridural shock refers to vasodilatory shock induced by peridural or epidural infusion in otherwise uncomplicated procedures.
¶ The 11 cases of intoxication were drug overdoses (5 cases) and voluntary intoxication with benzodiazepines (3), tricyclic antidepressants (2), and calcium-channel blockers (1).
‖ P<0.05 for the comparison of norepinephrine with dopamine.
** Data were available for 277 patients.
†† Data were available for 1249 patients.
‡‡ Data were available for 336 patients.
§§ P<0.01 for the comparison of norepinephrine with dopamine.
¶¶ Data were available for 337 patients.
‖‖ Corticosteroids administered at baseline included hydrocortisone and prednisolone.
Kaplan–Meier curves for the subgroup analysis according to type of shock are shown in Figure 7 in the Supplementary Appendix.

DISCUSSION

In this multicenter, randomized, blinded trial comparing dopamine and norepinephrine as the initial vasopressor therapy in the treatment of shock, there was no significant difference in the rate of death at 28 days between patients who received dopamine and those who received norepinephrine. Dopamine was associated with more arrhythmic events than was norepinephrine, and arrhythmic events that were severe enough to require withdrawal from the study were more frequent in the dopamine group. In addition, dopamine was associated with a significant increase in the rate of death in the predefined subgroup of patients with cardiogenic shock.

The rate of death at 28 days in this study was close to 50%, which is to be expected in a study with very few exclusion criteria and is similar to the rate in previous observational studies.3,9,21-24 Our trial was a pragmatic study that included all patients who were treated for shock states, and therefore, it has high external validity. The study design allowed for maximal exposure to the study drug, since we included patients who had received open-label vasopressors for a maximum of 4 hours before randomization and since during the 28-day study period, the study drug was withdrawn last when patients were weaned from vasopressor therapies and was resumed first if resumption of vasopressor therapy was necessary.

Smaller observational studies have suggested that treatment with dopamine may be detrimental to patients with septic shock.3,9,10 However, Póvoa et al. reported a lower rate of death among patients treated with dopamine than among those treated with norepinephrine.25 In our study, which included more than 1000 patients with septic shock, there was no significant difference in the outcome between patients treated with dopamine and those treated with norepinephrine.

Among patients with cardiogenic shock, the rate of death was significantly higher in the group treated with dopamine than in the group treated with norepinephrine, although one might expect that cardiac output would be better maintained with dopamine26-28 than with norepinephrine. The exact cause of the increased mortality cannot be
Table 3. Secondary Outcomes and Adverse Events. *

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dopamine (N=858)</th>
<th>Norepinephrine (N=821)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support-free days through day 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasopressors not needed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial drug</td>
<td>11.0±12.1</td>
<td>12.5±12.1</td>
<td>0.01</td>
</tr>
<tr>
<td>Open-label vasopressors</td>
<td>12.6±12.5</td>
<td>14.2±12.3</td>
<td>0.007</td>
</tr>
<tr>
<td>Mechanical ventilation not needed</td>
<td>8.5±11.2</td>
<td>9.5±11.4</td>
<td>0.13</td>
</tr>
<tr>
<td>Renal support not needed</td>
<td>12.8±12.4</td>
<td>14.0±12.3</td>
<td>0.07</td>
</tr>
<tr>
<td>Intensive care not needed</td>
<td>8.1±10.3</td>
<td>8.5±10.3</td>
<td>0.43</td>
</tr>
<tr>
<td>Length of stay — no. of days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensive care unit</td>
<td></td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Median</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Interquartile range</td>
<td>1–11</td>
<td>2–12</td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td></td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td>Median</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Interquartile range</td>
<td>2–28</td>
<td>3–28</td>
<td></td>
</tr>
<tr>
<td>Cause of death in hospital — no./total no. (%)</td>
<td></td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td>Refractory shock</td>
<td>196/426 (46)</td>
<td>155/381 (41)</td>
<td></td>
</tr>
<tr>
<td>Withdrawal or withholding of therapy</td>
<td>193/426 (45)</td>
<td>190/381 (50)</td>
<td></td>
</tr>
<tr>
<td>Brain death or severe postanoxic lesions</td>
<td>37/426 (9)</td>
<td>36/381 (9)</td>
<td></td>
</tr>
<tr>
<td>Adverse events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrhythmias — no. (%)</td>
<td>207 (24.1)</td>
<td>102 (12.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>176 (20.5)</td>
<td>90 (11.0)</td>
<td></td>
</tr>
<tr>
<td>Ventricular tachycardia</td>
<td>21 (2.4)</td>
<td>8 (1.0)</td>
<td></td>
</tr>
<tr>
<td>Ventricular fibrillation</td>
<td>10 (1.2)</td>
<td>4 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction — no. (%)</td>
<td>19 (2.2)</td>
<td>25 (3.0)</td>
<td>0.29</td>
</tr>
<tr>
<td>New infectious episode</td>
<td></td>
<td></td>
<td>0.69</td>
</tr>
<tr>
<td>No. of episodes</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interquartile range</td>
<td>0–1</td>
<td>0–1</td>
<td></td>
</tr>
<tr>
<td>Patients with at least one episode — no. (%)</td>
<td>674 (78.6)</td>
<td>619 (75.4)</td>
<td>0.35</td>
</tr>
<tr>
<td>Skin ischemia — no. (%)</td>
<td>56 (6.5)</td>
<td>34 (4.1)</td>
<td>0.09</td>
</tr>
<tr>
<td>Mild†</td>
<td>46 (5.4)</td>
<td>28 (3.4)</td>
<td></td>
</tr>
<tr>
<td>Severe‡</td>
<td>10 (1.2)</td>
<td>6 (0.7)</td>
<td></td>
</tr>
<tr>
<td>Arterial occlusion — no. (%)§</td>
<td>23 (2.7)</td>
<td>20 (2.4)</td>
<td>0.12</td>
</tr>
<tr>
<td>Arms or fingers</td>
<td>5 (0.6)</td>
<td>1 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Legs</td>
<td>7 (0.8)</td>
<td>13 (1.6)</td>
<td></td>
</tr>
<tr>
<td>Bowel</td>
<td>11 (1.3)</td>
<td>6 (0.7)</td>
<td></td>
</tr>
</tbody>
</table>

* Plus–minus values are means ±SD.
† Mild skin ischemia was defined as a cold and cyanotic skin area, with capillary refill time of more than 2 seconds.
‡ Severe skin ischemia was defined as cold and black skin, with no bleeding on puncture.
§ Arterial occlusion in an extremity was considered to be present if an extremity was cold, if the capillary refill time was prolonged (>2 seconds), and if there was no pulse in the nutritive artery. Vascular occlusion in the bowel was considered to be present if bowel ischemia was detected by laparotomy, computed tomography, or colonoscopy.
were roughly equipotent with respect to systemic arterial pressure, and there were only minor differences in the use of open-label norepinephrine, most of which were related to early termination of the study drug and a shift to open-label norepinephrine because of the occurrence of arrhythmias that were difficult to control. Doses of open-label norepinephrine and the use of open-label epinephrine and vasopressin were similar between the two groups. Second, we used a sequential design, which potentially allowed us to stop the study early if an effect larger than that expected from observational trials occurred; however, the trial was eventually stopped after inclusion of more patients than we had expected to be included on the basis of our estimates of the sample size. Accordingly, all conclusions related to the primary outcome reached the predefined power.

In summary, although the rate of death did not differ significantly between the group of patients treated with dopamine and the group treated with norepinephrine, this study raises serious concerns about the safety of dopamine therapy, since dopamine, as compared with norepinephrine, was associated with more arrhythmias and with an increased rate of death in the subgroup of patients with cardiogenic shock.

Supported in part by the European Society of Intensive Care Medicine through support from the European Critical Care Research Network.

Dr. Aldecoa reports receiving consulting fees from Covidien. No other potential conflict of interest relevant to this article was reported.
Dopamine and norepinephrine in shock

Copyright © 2010 Massachusetts Medical Society.
DESCRIPTION AMOUNT

<table>
<thead>
<tr>
<th>Study Guide</th>
<th>Amount</th>
<th>Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>The 2012 Lifelong Learning and Self-Assessment Study Guide</td>
<td>$199</td>
<td>$50 Off</td>
</tr>
<tr>
<td>The 2011 Lifelong Learning and Self-Assessment Study Guide</td>
<td>$199</td>
<td>$50 Off</td>
</tr>
<tr>
<td>The 2010 Lifelong Learning and Self-Assessment Study Guide</td>
<td>$199</td>
<td>$50 Off</td>
</tr>
<tr>
<td>The 2009 Lifelong Learning and Self-Assessment Study Guide</td>
<td>$199</td>
<td>$50 Off</td>
</tr>
</tbody>
</table>

- Full reprints of the original articles
- 35 AMA PRA Category 1 Credits™ or 35 ACEP Category 1 CME Credits
- A handy summary of key points so you get the “must-know” information for each article.
- An in-depth discussion of each article to clarify and elaborate on the key points.
- Sample questions to help you quiz yourself on your knowledge of the material.
- Answers and explanations to the sample questions that drive home the main points.
- A critical discussion and critique of the article that answers the question “What does this article really tell us?”
- 100% money-back guarantee: If, for any reason, you are not completely satisfied simply call us to receive a full and immediate refund. No questions asked.

Order Your LLSA Study Guide Today

Published by EB Medicine
5550 Triangle Pkwy, Ste 150 / Norcross, GA 30092
Contact 1-800-249-5770 or ebm@ebmedicine.net
Order at www.ebmedicine.net/LLSA

Name: __
Address Line 1: _______________________________________
Address Line 2: _______________________________________
City, State, Zip: _______________________________________

EXCLUSIVE DISCOUNT OFFER

Yes! Please send me the LLSA Study Guide(s). Because I am a preferred customer, I am eligible for the exclusive discounted rate of $149 (a $50 savings). Promotion Code BLBP

2012 LLSA Study Guide....................$149 each
2011 LLSA Study Guide....................$149 each
2010 LLSA Study Guide....................$149 each
2009 LLSA Study Guide....................$149 each

Check enclosed or Charge my Visa / MC / AmEx
Card # ________________________________
Exp __ Signature _______________________
Phone ________________________________
Email ________________________________

We respect your privacy, and we hate spam as much as you do! We will never share your email address.